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Chapter 1

Introduction

Ever since McMillan’s formula has been published in 1968 [1], it has been widely used1 to
obtain estimates of the critical temperature of superconductors as a function of three effective
material parameters, namely an average phonon frequency 〈ω〉, the electron-phonon coupling
strength λ and the Coulomb pseudo-potential µ∗, which can be extracted from experiment [3] or
first-principles calculations. It constitutes an approximation to the more general Eliashberg
theory of superconductivity [4] from which it was derived by fitting analytic approximations of
the underlying equations to exact numerical results. Although for the latter the special phononic
density of states of niobium has been assumed, which was simply at hand at that time [5], the
validity of the resulting formula turned out to be much more general.

The aim of the present work is to trace the steps that lead from the theory of the fundamental
interactions between electrons and phonons to the handy formula for the critical temperature
and to perform further tests on its scope, many of them, supposedly, have already been carried
out somewhere in its past of almost half a century and fallen into oblivion or, more probably,
just overlooked this time. Special attention is paid to potential discrepancies emerging from
exceptional densities of electronic states and the question if and possibly how the multi-band
case with non-scalar coupling strengths can be brought into accordance. Notwithstanding
that in the course of the investigations no references to specific materials are made but rather
simple models applied, it is intended that the results be of use for the understanding of novel,
especially two-dimensional materials.

For this purpose, an appropriate software is developed which may be used not only to obtain
electronic self-energies on the imaginary or real frequency axis as solutions of the multi-band
Eliashberg equations or analytically continued by means of Padé approximants [6], respectively,
but also to solve the linearized critical-state equations for a parameter of choice, which may
be either the critical temperature itself, the phonon frequency or any element of the matrices
defining the coupling strengths, for the respective other quantities fixed.

To make a start, the following Chapter 2 gives a very brief introduction to the field of
superconductivity, including an outline of its early history and the presentation of the prominent
BCS theory [7; 8]. Before this subject can be discussed in more detail, it is necessary to
extend the theoretical framework by introducing the fundamental concepts of many-body physics
such as Green functions and diagrammatical perturbation theory, which will be done in
Chapter 3. On this basis, the different formulations and special cases of the Eliashberg theory
of superconductivity are dealt with in Chapter 4, which completes the preparative part of the
thesis. Subsequently, the actual numerical results are demonstrated in Chapters 5 and 6 which
are dedicated to the results for single- and muli-band systems, respectively, where band stands
in place for any chosen subset of electronic states. Finally, in Chapter. 7 the most important
results are summarized and the pending questions brought up for future discussions. A good
deal of the work falls within the scope of Appendix B where, following a short formulary on
Fourier analysis in Appendix A, the source code of the employed programs is exposed and
commented, supplemented with a short user manual.

1Today, the American Physical Society alone lists 3203 references to the original paper by McMillan, to be
complemented by 1326 citations of a closely related publication by Allen and Dynes [2].
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Chapter 2

Superconductivity

This chapter gives an introduction to the field of superconductivity and is not at all intended
to be exhaustive. The theory that will actually be applied in this work is presented in the
following two chapters.

In the first section the earlier history of superconductivity is briefly reviewed, loosely
following a presentation by Fröhlich [9]. Next, a canonical transformation introduced by the
latter is performed, which reveals that the interaction between electrons and phonons can lead
to an effective attraction between electrons and consequently to the formation of Cooper pairs.
Finally, the corresponding microscopic theory of superconductivity by Bardeen, Cooper and
Schrieffer is presented.1

Throughout this work units are chosen in which the Boltzmann and the reduced Planck
constant are unity, i.e. kB = h̄ = 1. Consequently, the same dimension is attributed to energy
and both temperature and frequency.

2.1 Early history of superconductivity

In 1911 the dutch physicist Kamerlingh Onnes finds that mercury ceases to resist electric
current completely when cooled down below a critical temperature of about 4 K with the help
of liquid helium.2 This is the first time a manifestation of superconductivity is observed. In the
years that follow, similar observations are made for other metals and the fundamental properties
of the novel state exposed.

The misconception of superconductors which obey Ohm’s law is overcome in 1933, when
Meißner and Ochsenfeld find them to be perfect diamagnets [13]: Up to a critical strength
an external magnetic field is expelled from a superconductor – even if it was already there
before the critical temperature has been undercut. On the basis of this observation the London
brothers formulate a first macroscopic theory of superconductivity in 1935 [14].

However, not only have the characteristics of a phase transition been left out of consideration,
but also the underlying physical mechanisms remain unclear. Some of the further are addressed
by the phenomenological theory of Ginzburg and Landau published in 1950 [15], which introduces
an order parameter for the superconducting state.

An important hint towards the right direction is the discovery of the isotope effect by
Maxwell [16] and Reynolds et al. [17] in the same year: The critical temperature depends on
the nuclear mass just as the phononic behavior. At that time, Fröhlich starts to successfully
use field-theoretical methods to describe the interaction between electrons and phonons, which
is gradually accepted as causing superconductivity. In 1952, his electron-phonon Hamilton
operator is established and mapped onto an effective interaction between electrons which turns
out to be attractive [18].

1Both derivations in this chapter are guided by Czycholl [10].
2According to Ref. 11, on April 8, 1911 Kamerlingh Onnes writes “Kwik nagenoeg nul” in his notebook, which

means “[resistance of ] mercury near enough zero”. In Communication No. 122b from the Physical Laboratory at Leiden
he states more precisely: “At 3 ◦K [sic], the resistance was found to have fallen below [. . . ] one ten-millionth of the
value which it would have at 0 ◦C” [12].
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2 SUPERCONDUCTIVITY 3

It is not until 1957 that on this basis the first microscopic theory of superconductivity is
formulated by Bardeen, Cooper and Schrieffer [7; 8]. The principal idea is the formation of
a condensate of Cooper pairs which opens up an energy gap at the Fermi level the width of
which assumes the role of the order parameter.

Since the modeled interaction in the BCS theory is instantaneous as opposed to the
underlying electron-phonon interaction which is retarded, discrepancies between theory and
experiment emerge, especially when the coupling is strong. In 1960, Eliashberg establishes a
theory which accounts for this retarded nature of the interaction [4].

2.2 Canonical transformation

It is now shown that the electron-phonon interaction can involve an effective electron-electron
interaction which is attractive [18]. To that end the Fröhlich-Hamilton operator

H =

H0︷ ︸︸ ︷∑

k

εkc+
k ck +

∑

q

ωqb+
q bq +

V︷ ︸︸ ︷∑

kq

gqc+
k+qck [bq + b+

−q]

is considered, which describes the interaction between electrons with wave number k and energy
εk , which are annihilated and created by the Fermi operator ck and its adjoint, respectively,
and longitudinal phonons, where analogous definitions hold for q, ωq and bq. The strength of
the coupling is given by gq. The spin is of no importance here and thus omitted.

The idea is to apply a canonical transformation to the Hamilton operator by means of the
unitary operator eiS, where S is self-adjoint. Expanding the exponential functions,

HT = e−iS H eiS = H + i[H,S]− 1

2
[[H,S],S] + . . .

= H0 + V + i[H0,S] + i[V,S]− 1

2
[[H0,S],S] + . . .

≈ H0 +
i

2
[V,S] ≡ H0 + VT,

where [H0,S] = iV has been chosen, which implies a linear dependence of S on V. Thus all
terms which are at least quadratic in the interaction are neglected. Using the commutators

[
b+

q′bq′ , bq

]
= −bq δ

q
q′ ,

[
c+

k ′ ck ′ , c+
k+qck

]
= c+

k+qck

[
δ

k+q

k ′
− δk

k ′
]
,

[
b+

q′bq′ , b+
−q

]
= b+

−qδ
−q
q′ ,

[
c+

k ′+q′ck ′ , c+
k+qck

]
= c+

k+q+q′ckδ
k+q

k ′
− c+

k+qck−q′δ
k−q′

k ′
,

one can verify both that S has the explicit form

S = i
∑

kq

gqc+
k+qck

[
bq

εk+q − εk − ωq

+
b+
−q

εk+q − εk + ω−q

]

and, assuming g∗q = g−q and ωq = ω−q, that the renormalized interaction is given by

VT =
∑

kk ′q

|gq|2ωq

(εk+q − εk )2 − ω2
q

c+
k+qckc+

k ′−q
ck ′ + · · ·

· · · − 1

2

∑

kqq′

gqgq′
[
c+

k+q+q′ck − c+
k+qck−q′

][
bq′ + b+

−q′
] [

bq

εk+q − εk − ωq

+
b+
−q

εk+q − εk + ω−q

]
.

The first term describes an effective interaction between electrons which is attractive, i.e.
negative, for |εk+q − εk | < ωq. The seconds term describes processes involving two phonons
and is disregarded in the following.

Since the energy transfer associated with the attractive interaction is small, only electrons
near the Fermi surface are affected, where both free and occupied states are available. Taking
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Figure 2.1: Temperature dependence of the BCS gap for different values of the coupling strength VN(ε).
The Debye frequency is assumed to be 20 meV.

further the conservation of momentum into account, the possible momentum transfers are very
limited except for the case when the total momentum vanishes. As a consequence, an electron
is most susceptible for being effectively attracted to its time-revered counterpart, which has
both opposite momentum and spin, whereby the latter prevents local interactions from vanishing.
The crucial idea which led to the understanding of superconductivity is that such electrons form
so-called Cooper pairs, bound by the attractive interaction.

2.3 BCS theory

In 1957, Bardeen, Cooper and Schrieffer developed, on the basis of the results presented
in the previous section, a model Hamilton operator to describe superconductivity [7; 8]. It
is reduced to the essential, namely an attractive interaction of uniform strength V between
electrons which form a Cooper pair and are no further away from the Fermi surface than a
typical phonon frequency, typically Debye’s ωD. Since the total momentum of a Cooper pair is
zero, the internal momentum transfer corresponds to a rotation in k-space. The model reads

H =
∑

kσ

εknkσ −
∑

kk ′

Vkk ′C
+
k ′Ck with nkσ = c+

kσckσ .

Ck = c−k↓ck↑ is a Cooper-pair annihilator, which does not satisfy Bose commutation relations:

[Ck ,C
+
k ′ ] = (1− nk↑ − n−k↓)δkk ′ .

Measuring energies relative to the Fermi level, the interaction strength is given by

Vkk ′ =

{
V if |εk | < ωD and |εk ′ | < ωD,

0 otherwise.

In order to promote the solution of the Hamilton operator, the interaction term is usually
factorized into anomalous expectation values. Hence, in the exact identity [19, Eq. 4.20]

C+
k ′Ck = (C+

k ′ − 〈C
+
k ′〉)(Ck − 〈Ck〉) + 〈C+

k ′〉Ck + 〈Ck〉C+
k ′ − 〈C

+
k ′〉〈Ck〉

leading and trailing summands, which represent fluctuations of the Cooper pair operators and
a constant energy shift, respectively, are neglected from now on. The averages of either two
creation or annihilation operator do not vanish, as one might expect, because the Hamilton
operator with respect to which they are evaluated no longer conserves the particle number:

H =
∑

kσ

εknkσ −
∑

k

∆k [Ck + C+
k ] with ∆k =

∑

k ′

Vkk ′〈Ck ′〉. (2.1)



2 SUPERCONDUCTIVITY 5

A self-consistently problem has emerged. ∆k will turn out to be a suitable order parameter
for the superconducting state. Being not interested in its phase, which would be important to
describe e.g. tunneling effects, it is assumed to be real.

At this point, the Hamilton operator is still not diagonal. This may be accomplished with
the help of the Bogoliubov quasi-particles [20, p. 42],

αk = ukck↑ − vkc+
−k↓, ck↑ = ukαk + vkβ

+
k ,

βk = ukc−k↓ + vkc+
k↑, c−k↓ = ukβk − vkα

+
k ,

where the coefficients uk and vk may also chosen to be real. It is desirable that the new
operators obey Fermi commutation relations. Except with their own adjoints they already
anti-commute so that the only further requirement is

{αk ,α
+
k } = {βk ,β

+
k } = u2

k + v2
k ≡ 1.

A choice of uk and vk which both satisfies the above relation and diagonalizes the Hamilton
operator is given by [20, Eq. 7]

{
u2

k

v2
k

}
=

1

2

[
1± εk

Ek

]
with Ek =

√
ε2

k + ∆2
k ,

where braces enclose alternatives. Therewith, the free and interacting parts are found to be

∑

kσ

εknkσ =
∑

k

[
ε2

k

Ek

(α+
k αk + β+

k βk − 1) +
∆kεk

Ek

(α+
k β

+
k + βkαk ) + εk

]
,

−
∑

k

∆k [Ck + C+
k ] =

∑

k

[
∆2

k

Ek

(α+
k αk + β+

k βk − 1)− ∆kεk

Ek

(α+
k β

+
k + βkαk )

]
,

of which constants will again be neglected. Altogether, the diagonal Hamilton operator reads

H =
∑

k

Ek (α+
k αk + β+

k βk ).

This identifies Ek as the new single-particle energy and ∆k as half of a band gap which has
opened up in the spectrum. The latter remains to be determined self-consistently:

∆k =
∑

k ′

Vkk ′ [u
2
k ′〈βk ′αk ′〉 − v2

k ′〈α+
k ′β

+
k ′〉+ uk ′vk ′ (1− 〈α+

k ′αk ′〉 − 〈β+
k ′βk ′〉)]

=
1

2

∑

k

Vkk ′
∆k ′

Ek ′
[1− 2f+(Ek ′ )] =

1

2

∑

k

Vkk ′
∆k ′

Ek ′
tanh

Ek ′

2T
.

Above, averages of operators which do not conserve the number of Bogoliubov quasi-particles
vanish, while the average occupation numbers are given by Fermi functions f+(Ek ) as will
be derived in Section 3.3. The trivial solution ∆k = 0 to the above equation exists for
all temperatures T and represents the normal state. The presence of a non-zero solution
characterizes the superconducting state.

From the definition of Vkk ′ it follows that also ∆k is a constant ∆ for k within the Fermi
shell and zero otherwise. Hence, dividing by ∆ 6= 0,

1 =
V

2

|εk<ωD|∑

k

tanh

√
ε2

k +∆2

2T√
ε2

k + ∆2
=
V

2

∫ ωD

−ωD

dεN(ε)
tanh

√
ε2+∆2

2T√
ε2 + ∆2

,

where N(ε) is the density of states, usually assumed to be constant over the range of integration.
This is the famous BCS gap equation. The resulting temperature dependence of the order
parameter for different coupling strengths is displayed in Fig. 2.1.



Chapter 3

Many-body physics

Superconductivity results from the interaction of a huge number of particles and quasiparticles,
conventionally electrons and phonons, and depends strongly on temperature. A prominent
approach to such problems is the Green-function method of statistical physics, which emerged
in the middle of the 20th century as a side product of quantum electrodynamics.1 Since the
equations which make up Eliashberg theory, namely Eqs. 4.5 on page 23, are only meaningful
within this framework, a review of the relevant aspects is given in this chapter.2

Initially, the possible ways of handling time dependence in quantum mechanics are presented,
focussing on the interaction picture. On this basis Green functions are defined, including their
imaginary-axis formulation. Next, not only to exemplify what has been stated so far but also
because it will provide the fundamental building block for what follows, the special case of
non-interacting particles is discussed. Subsequently, the perturbation series and Wick’s theorem
for non-zero temperatures are derived, which prepare the ground for Feynman’s diagrammatical
perturbation theory. For some model interactions the most important diagrams are deduced
explicitly. Finally, the self-energy and its most common approximations are introduced.

In some places where no ambiguity arises, different quantities are represented by the same
symbol and only distinguished by the name or presence of a formal argument. This concerns
e.g. mutual Fourier transforms as well as functions of real and imaginary time.

3.1 Dynamical pictures

It is convenient to present time dependence in quantum mechanics on the basis of expectation
values. Let the Hamilton operator of the system be H = H0 + V with H0 diagonal and V an
interaction. At time t, the expectation value of the observable X in the state |ψ〉 reads

〈ψ| eiHt X e−iHt |ψ〉 = 〈ψ| eiHt e−iH0t eiH0t X e−iH0t eiH0t e−iHt |ψ〉.

So far, both observables and states are assumed to be independent of time. In practice however,
they are usually associated with the adjacent exponential functions, which can be done in
different ways, each of which corresponds to a so-called dynamical picture.

In the Schrödinger picture the full time dependency is ascribed to the states. Differentiation
with respect to time yields the Schrödinger equation. Formally,

|ψ(t)〉 = e−iHt |ψ〉 ⇒ i
d

dt
|ψ(t)〉 = H|ψ(t)〉.

1In 1949 Dyson publishes an attempt to unify “The radiation theories of Tomonaga, Schwinger, and Feynman” [21]
together with an early Feynman diagram. Six years later Matsubara applies the new methods to the calculation of the
grand-canonical partition function [22].

2Physical concepts that are very well established nowadays will be stated without reference to their specific origins.
They are covered in most textbooks on this subject such as the one by Mahan [23].

6
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As opposed to this, in the Heisenberg picture only the observables depend on time. In this
case differentiation using the product rule yields Heisenberg’s equation of motion. Thus

X(t) = eiHt X e−iHt ⇒ i
d

dt
X(t) = [X(t),H].

A useful compromise is provided by the Dirac picture, also known as interaction picture,
where the time dependence is shared among observables and states. The former evolve according
to the unperturbed part of the Hamilton operator while the latter are governed by the interaction.

To be able to distinguish between the different pictures, time arguments will be enclosed
in square brackets [. . . ]. Formally, both a Heisenberg- and a Schrödinger-like equation of
motion emerge for observables and states, respectively:

X[t] = eiH0t X e−iH0t ⇒ i
d

dt
X[t] = [X[t],H0], (3.1a)

|ψ[t]〉 = eiH0t e−iHt |ψ〉 ⇒ i
d

dt
|ψ[t]〉 = V[t]|ψ[t]〉. (3.1b)

3.1.1 Dyson series

According to Eq. 3.1b, the unitary time-evolution operator S(t, t0) for arbitrary initial times t0,3

precisely the one defined by |ψ[t]〉 = S(t, t0)|ψ[t0]〉, has to satisfy the differential equation

d

dt
S(t, t0) = −iV[t] S(t, t0) with S(t0, t0) = 1.

Integration followed by a fixed-point iteration, which is expected to converge, yields

S(t, t0) = 1− i

∫ t

t0

dt′ V[t] S(t, t0) =
∞∑

n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2· · ·
∫ tn−1

t0

dtn V[t1] . . .V[tn].

With Sn being the group of all n! permutations of 1 . . . n one can just as well write

S(t, t0) =

∞∑

n=0

(−i)n

n!

∑

P∈Sn

∫ t

t0

dtP(1)

∫ tP(1)

t0

dtP(2)· · ·
∫ tP(n−1)

t0

dtP(n) V[tP(1)] . . .V[tP(n)]

since a permutation of the dummy variables does not alter the value of the integral. For t > t0,
which will be assumed from now on, the domain of integration is always an n-simplex defined
by t0 < tP(n) < · · · < tP(1) < t. Noting that the n-simplices for all permutations add up to the
n-dimensional hypercube defined by t0 < ti < t for all i ∈ {0 . . . n},4 one finds most beneficial
formulation of the Dyson series5

S(t, t0) =

∞∑

n=0

(−i)n

n!

∫ t

t0

dt1· · ·
∫ t

t0

dtn T V[t1] . . .V[tn], (3.2)

where T is a time-ordering operator, which sorts the factors of a product of operators chronolog-
ically with the result that their actual time arguments ascend from right to left.

If the time dependence of the perturbation operator does not involve any non-commuting
quantities, the time-ordering operator is no longer needed and Eq. 3.2 can be written as

S(t, t0) = exp

[
−i

∫ t

t0

dt′ V[t′]

]
.

But even if the operators do not commute it is common practice to use a symbolic exponential
function with the time-ordering operator placed in front.

3Dirac introduces this operator in § 44 “The perturbation considered as causing transitions” of his textbook on
quantum mechanics [24].

4The idea of speaking of ‘simplices’ and ‘hypercubes’ in this context is taken from lecture notes by V. Kaplunovsky.
5See Eq. 32 in Dyson’s paper [21] for an analogous formula, which he further discusses in Ref. 25.
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3.2 Green functions

Gathering complete information about an interacting many-body system is a hard, if not
impossible task. However, much can be learned from studying the behavior of single test
particles within this system.

To that end correlation functions like 〈A(t) B(t′)〉 are considered, where A and B are either
fermionic or bosonic ladder operators. They describe how the presence or absence of a certain
particle at one time correlates with an analogous occurrence at another time.

To take an equilibrium temperature β−1 into account, 〈. . . 〉 shall denote an ensemble
average. For brevity, a canonical ensemble with the partition function Z = Tr e−βH is assumed;
associating the Hamilton operator H with H− µN, where µ is the chemical potential and N
the particle-number operator, yields the grand canonical ensemble.

〈A(t) B(t′)〉 =
1

Z
Tr

[
e−βH eiHt A e−iHt eiHt′ B e−iHt′

]

=
1

Z
Tr

[
e−βH eiH(t−t′) A e−iH(t−t′) B

]
= 〈A(t − t′) B〉 ≡ C (t − t′)

(3.3)

depends on time differences only, since the trace of a product is invariant under cyclic permuta-
tions of the factors. With the energy eigenstates |n〉 and -values En,

C (t) =
1

Z

∑

nm

〈n|e−βH eiHt A e−iHt |m〉〈m|B|n〉 =
1

Z

∑

nm

e−βEn 〈n|A|m〉︸ ︷︷ ︸
Anm

〈m|B|n〉︸ ︷︷ ︸
Bmn

ei(En−Em)t . (3.4)

A Fourier transform using Eq. A.3c reveals a weighted excitation spectrum:

C (ω) =
1

2π

∫ ∞

−∞
dt C (t) eiωt =

1

Z

∑

nm

e−βEn AnmBmn δ [ω − (Em − En)]. (3.5)

At temperature β−1, the probability that a many-particle state |n〉 with energy En is realized
reads e−βEn /Z and the average occupation number of a single-particle state with energy ε is
given by f±(ε) = [eβε ± 1]−1 as derived in Section 3.3. From now on upper and lower signs
hold for fermions and bosons, respectively. One can easily verify that

e−βEn =
[
1∓ f±(Em − En)

][
e−βEn ± e−βEm

]

and write Eq. 3.5 as C (ω) = [1∓ f±(ω)]A(ω) with the spectral function

A(ω) =
1

Z

∑

nm

[
e−βEn ± e−βEm

]
AnmBmn δ [ω − (Em − En)]. (3.6)

It is straightforward to reverse the steps that led from Eq. 3.3 to Eq. 3.5 and apply them to
Eq. 3.6. The Fourier transform of the spectral function turns out to be the expectation value of
the (anti-) commutator of the respective operators:

A(t) =

∫ ∞

−∞
dωA(ω) e−iωt = 〈[A(t),B]±〉. (3.7)

Causality forbids the present to affect the past. This may be implemented into the theory
by nullifying the correlation for negative time differences. Together with a factor −i, which is
solely introduced for convenience, this yields the retarded Green function

Gret.(t) = −iΘ(t)A(t) = −iΘ(t) 〈[A(t),B]±〉. (3.8)

With the help of Eqs. 3.7 and A.3a, yet another Fourier transform back to the energy domain,
by convention without a factor of (2π)−1, yields

Gret.(ω) =

∫ ∞

−∞
dt Gret.(t) eiωt = −i

∫ ∞

−∞
dω′ A(ω′)

∫ ∞

0

dt ei(ω−ω′)t =

∫ ∞

−∞
dω′

A(ω′)

ω − ω′ + i0+
. (3.9)

The Sokhotski–Plemelj theorem leads to a useful expression for the spectral function:

Im
1

ω + i0+
= −πδ(ω) ⇒ A(ω) = − 1

π
ImGret.(ω). (3.10)
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3.2.1 Imaginary-time formalism

The retarded Green function as defined in Eq. 3.8 contains two different types of exponential
functions: the ensemble weight which decays with increasing energy, and the ones oscillating
with time. It would be convenient to be able to treat both in one go which can be accomplished
by assuming the time to be purely imaginary. Introducing a real parameter τ = it and writing

X(τ) = eHτ X e−Hτ

as in Eq. 2.6 of Ref. 22, the theory as been formally freed from the periodic terms.
The Matsubara-Green function is preliminary defined as

G(τ) = −〈T A(τ) B〉,

where T acts as in Eq. 3.2, except that is sorts with respect to the parameter τ and induces a
change of sign each time two fermion operator are transposed.

Using the cyclic property of the trace and introducing unity, one finds the property

〈A(τ) B〉 =
1

Z
Tr

[
e−βH eHτ A e−Hτ eβH e−βH B

]

=
1

Z
Tr

[
e−βH B eH(τ−β) A e−H(τ−β)

]
= 〈B A(τ − β)〉

and as a consequence for 0 < τ < β

G(τ) = −〈B A(τ − β)〉 = ±〈T A(τ − β) B〉 = ∓G(τ − β). (3.11)

Being only interested in the interval (−β, β) one can just as well consider a modified Green
function which continues periodically beyond this domain, namely

G̃(τ) =
1

β

∑

n∈Z
e−iπnτ/βGn with Gn =

1

2

∫ β

−β
dτ eiπnτ/βG(τ).

Because of the (anti-) periodicity found in Eq. 3.11 one has

∫ 0

−β
dτ eiπnτ/β G(τ) = ∓

∫ 0

−β
dτ eiπnτ/βG(τ + β) = ∓e−iπn

∫ β

0

dτ eiπnτ/βG(τ),

which causes every other series coefficient to vanish, thus

Gn =

{∫ β

0 dτ eiπnτ/β G(τ) for fermions (bosons) if n is odd (even),

0 otherwise.

So one redefines the Matsubara-Green function and its imaginary-axis representation:

G(τ) =
1

β

∑

n∈Z
e−iωnτG(iωn) and G(iωn) =

∫ β

0

dτ eiωnτG(τ) = −
∫ β

0

dτ eiωnτ〈A(τ)B〉 (3.12)

with the Matsubara frequencies

ωn =

{
(2n+1)π

β
for fermions,

2nπ
β

for bosons.

The latter are denoted νn in the future. Using Eq. 3.4 and comparing with Eqs. 3.9 one finds
that Gret.(ω) can be obtained from G(iω) through analytic continuation iω→ ω + i0+, since

G(iωn) = − 1

Z

∑

nm

e−βEnAnmBmn

∫ β

0

dτ eiωnτe(En−Em)τ

=
1

Z

∑

nm

AnmBmn
e−βEn ± e−Emβ

iωn − (Em − En)
=

∫ ∞

−∞
dω

A(ω)

iωn − ω
.

(3.13)
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3.3 Free particles

The theory presented in the preceding sections will now be exemplified by means of the special
case of free particles, which will turn out to be fundamental in the following section. In this
context ‘free’ shall not be understood as ‘free from any forces’ but rather as ‘non-interacting’
since independent Bloch electrons in a fixed lattice are very well considered free, just as every
quasi-particle which diagonalizes a single-particle Hamilton operator. In second quantization
the latter is quadratic in the particle operators and diagonalized it reads

H0 =
∑

k

εknk with nk = a+
k ak .

where ak annihilates a fermion or boson with arbitrary, possibly combined, quantum number k ,
while εk and the operator nk represent the corresponding energy and occupation number.

First, the time-dependence of the creation and annihilation operators is presented. Using
Eq. 3.1a as well as the canonical (anti-) commutation relations one finds

ak [t] = e−iεk t ak , a+
k [t] = eiεk t a+

k ,

ak [τ ] = e−εkτ ak , a+
k [τ ] = eεkτ a+

k .
(3.14)

The Dirac picture is used to allow for a perturbation V to be added without having to update
these equations. If H0 is already the full Hamilton operator, they are equally valid in the
Heisenberg picture.

Next, the Fermi-Dirac and the Bose-Einstein distribution f± are derived, which give the
average number of fermions and bosons, respectively, with the same quantum number as a
function of their energy. Each eigenstate |n〉 of the free Hamilton operator H0 is a Fock state,
thus an (anti-) symmetric product of the occupied single-particle states, and the corresponding
energy En =

∑
k εknk , where nk are occupation numbers, is a sum of single-particle energies.

f±(εk ) = 〈nk〉0 =

∑
n〈n|nk |n〉e−βEn∑

n e−βEn
=

∑N
nk=0 nke

−βεknk
∑N

nk=0 e−βεknk
,

where N is the maximum number of particles allowed to occupy the same state and 〈. . . 〉0
denotes an average with respect to a diagonal Hamilton operator. In the last step the fraction
has been reduced through division by the partial sum of the denominator for which 〈n|nk |n〉 = 0.

For fermions N = 1 and thus

f+(εk ) =
e−βεk

1 + e−βεk
=

1

eβεk + 1
.

For bosons N =∞ and, recognizing that 0+(nk −1)+1, 1+(nk −2)+1 . . . (nk −1)+0+1
are nk ways to express nk as well as a geometric series, one finds

f−(εk ) =

∑∞
n=0

∑∞
m=0 e−βεk (n+m+1)

∑∞
n=0 e−βεkn

=

∞∑

m=0

e−βεk (m+1) =
e−βεk

1− e−βεk
=

1

eβεk − 1
.

Finally, the Green functions on the imaginary-axis as defined in Eq. 3.12 are determined.
For electrons, the operators A and B are simply ckσ and c+

kσ . One can formulate correlation
functions 〈ckσ [τ ] c+

kσ 〉0 = e−εkτ [1− f+(εk )] and therewith

G0
kσ (iωn) = −

∫ β

0

dτ eiωnτ〈ckσ [τ ] c+
kσ 〉0 =

1 + e−βεk

iωn − εk

[1− f+(εk )] =
1

iωn − εk

, (3.15)

which corresponds to a spectral function A(ω) = δ(ω − εk ) as follows from Eq. 3.13.
For phonons one usually applies a different notation with symmetric operators ϕq = bq +b+

−q.
Analogously, this yields 〈ϕq[τ ]ϕ+

q 〉0 = e−ωqτ [1 + f−(ωq)] + eω−qτf−(ω−q) and thus

D0
q(iνn) = −

∫ β

0

dτ eiνnτ〈ϕq[τ ]ϕ+
q 〉0 =

1

iνn − ωq

− 1

iνn + ω−q

ωq=ω−q

= − 2ωq

ν2
n + ω2

q

(3.16)

as well as the spectral function B(ω) = δ(ω − ωq)− δ(ω + ω−q).
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3.4 Perturbation series

It is yet to be clarified how the full Green function for arbitrary interactions can be calculated.
The basis idea is to build it iteratively from what is already known, namely the Green functions
of free particles.

The first step is to rewrite the Green function in a way that both the ensemble average and
the time dependence of the operators refer to the unperturbed part H0 of the Hamilton operator.

In the imaginary-time formalism, the time-evolution operator according to Eq. 3.2 reads

S(τ, τ0) =

∞∑

n=0

(−1)n

n!

∫ τ

τ0

dτ1· · ·
∫ τ

τ0

dτn T V[τ1] . . .V[τn]. (3.17)

For brevity, let S(τ) = S(τ, 0) = eH0τ e−Hτ . Inserting unities it can be shown that

〈. . . 〉 =
1

Z
Tr

[
e−βH . . .

]
=

1

Z
Tr

[
e−βH0 eβH0 e−βH . . .

]
=
〈S(β) . . . 〉0
〈S(β)〉0

,

A(τ) = eHτ A e−Hτ = eHτ e−H0τ eH0τ A e−H0τ eH0τ e−Hτ = S−1(τ) A[τ ] S(τ).

The Matsubara-Green function defined in Eq. 3.12 may thus be written as

G(τ) = −〈T A(τ) B(0)〉 = −Θ(τ)〈A(τ) B(0)〉 ±Θ(−τ)〈B(−τ) A(0)〉

=
1

〈S(β)〉0

{
−〈S(β) S−1(τ) A[τ ] S(τ) B[0]〉0 for 0 < τ < β,

±〈S(β) S−1(−τ) B[−τ ] S(−τ) A[0]〉0 for −β < τ < 0.

Since S(β) S−1(±τ) = S(β,±τ), in both cases the expectation value is fully time-ordered from
right to left. Consequently, it makes no difference if one introduces a time-ordering operator
for the Dirac picture that acts after the time-evolution operators have been expanded up to
the level of creation and annihilation operators. Then the factors may be freely permuted,
except that sign changes have to taken into account. However, the latter does not apply to
the time-evolution operators since the interaction usually contains an even number of fermion
operators. Mutual inverses cancel each other and the final expression reads

G(τ) = −〈T A[τ ] S(β) B[0]〉0
〈S(β)〉0

. (3.18)

Using the above formula, the Matsubara-Green function may be calculated to an arbitrary
order of accuracy by simply truncating the Taylor series in Eq. 3.17 after the corresponding
number of terms.

As an example, a perturbation of the form V =
∑

kk ′ vkk ′ a
+
k ′ak is considered. As a single-

particle operator it describes the interaction of a particle with some scattering potential rather
than with other particles. The first terms of the enumerator in Eq. 3.18 read

〈T A[τ ] S(β) B[0]〉0 = 〈T A[τ ] B[0]〉0 −
∫ β

0

dτ1

∑

k,k ′

vkk ′〈T A[τ ] a+
k ′ [τ1]ak [τ1] B[0]〉0

+
1

2

∫ β

0

dτ1

∫ β

0

dτ2

∑

k,k ′,q,q′

vkk ′vqq′〈T A[τ ] a+
k ′ [τ1] ak [τ1] a+

q′ [τ2] aq[τ2] B[0]〉0 + · · ·

Continuing in this way, expectation values of products of a growing number of creation and
annihilation operators will emerge. Fortunately, these can be factorized into free-particle Green
functions with the help of Wick’s theorem, which is presented in the following section.

This is the last step to be taken on the way to Feynman’s diagrammatical perturbation
theory, which will be outlined afterwards during the analysis of some model interactions.
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3.4.1 Wick’s theorem

For an even number of fermion or any number of boson operators Ai with i ∈ {1 . . . n} one has

[A1,A2 . . .An]± =
n∑

i=2

(∓1)i A2 . . .Ai−1 [A1,Ai]± Ai+1 . . .An, (3.19)

where i . . . j is an empty sequence for i > j . For example, the special case of six operators reads

[A,BCDEF]± = [A,B]±CDEF∓ B[A,C]±DEF + BC[A,D]±EF∓ BCD[A,E]±F + BCDE[A,F]±.

Taking the average of the left-hand side of Eq. 3.19 with respect to H0 yields

〈[A1,A2 . . .An]±〉0 =
1

Z
Tr{e−βH0 [A1,A2 . . .An]±} =

1

Z
Tr{[e−βH0 ,A1]± A2 . . .An]},

where the cyclic property of the trace has been used. With the help of Eq. 3.14 one finds

[e−βH0 ,A1]± = e−βH0eβH0 [e−βH0 ,A1]± = e−βH0
[
1± eε(A1)β

]
A1 =

e−βH0A1

±f±[ε(A1)]
,

where ε(A) is the energy change caused by applying A to the state of the unperturbed system.
The right-hand side of Eq. 3.19 is averaged as well. A comparison,

〈[A1,A2 . . .An]±〉0 =
〈A1 . . .An〉0
±f±[ε(A1)]

=

n∑

i=2

(∓1)i[A1,Ai]±〈A2 . . .Ai−1 Ai+1 . . .An〉0,

considering 〈AB〉0 = ±f±[ε(A)][A,B]± yields Wick’s theorem6 for non-zero temperatures:

〈A1 . . .An〉0 =

n∑

i=2

(∓1)i〈A1Ai〉0 〈A2 . . .Ai−1 Ai+1 . . .An〉0

=
∑

P∈Pn
(∓1)T (P)〈AP(1)AP(2)〉0 〈AP(3)AP(4)〉0 . . . 〈AP(n−1)AP(n)〉0,

where T (P) is the number of transpositions the permutation P consists of and

Pn = {P ∈ Sn | P(1) < P(3) < · · · < P(n− 1) and P(i) < P(i+ 1) for all i ∈ {1, 3 . . . n− 1}}

is the group of all possible pairings. Since within each pair of operators the original order is
preserved, the theorem holds for time-ordered expectation values as well, thus

〈T A1[τ1] . . .An[τn]〉0 =
∑

P∈Pn
(∓1)T (P)〈T AP(1)[τP(1)] AP(2)[τP(2)]〉0 . . . 〈T AP(n−1)[τP(n−1)] AP(n)[τP(n)]〉0.

(3.20)

3.5 Model interactions

For a satisfactory description of superconductivity, not only the ‘normal’ Green function

Gkσ (τ) = −〈T ckσ (τ) c+
kσ (0)〉 ∈ R, (3.21a)

which describes a propagating electron, but also the anomalous Gor’kov-Green function [29]

Fkσ (τ) = −〈T ckσ (τ) c−k−σ (0)〉 ∈ C, (3.21b)

which indicates the existence of Cooper pairs in analogy to the BCS gap in Eq. 2.1, is needed.
Solely for convenience, one introduces two additional functions

G̃kσ (τ) = −〈T c+
−k−σ (τ) c−k−σ (0)〉 = −G−k−σ (−τ), (3.21c)

F̃kσ (τ) = −〈T c+
−k−σ (τ) c+

kσ (0)〉 = [Fkσ (τ)]∗ (3.21d)

6The theorem is named in honor of Ref. 26. The generalization to non-zero temperatures was first carried out by
Matsubara [22] and shown to be exact by Thouless [27]. The derivation at hand is due to Gaudin [28].
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as well as the phonon Green function

Dq(τ) = −〈Tϕq(τ)ϕ+
q (0)〉 = D−q(−τ) ∈ R. (3.21e)

In the following, leading terms of the electronic Green functions are calculated explicitly
for some model interactions. First, the perturbation series for the electron-phonon interaction
as described by the Holstein-Hamilton operator is analyzed up the second order. As will be
shown, the latter bears a close resemblance to the first order terms of the homogeneous electron
gas and the simpler Hubbard model of interacting electrons.

For Hamilton operators which conserve the number of electrons, by which e.g. free electrons
but also all of the following models are described, the Gor’kov-Green functions vanish.
Nevertheless, in subsequent applications of Wick’s theorem, unperturbed expectation values of
Cooper-pair creation and annihilation operators which originate from the interaction terms are
kept, since in a further step they will be redefined with respect to the interacting system, in
which the strict conservation of particles is dropped.

3.5.1 Holstein model

In real space, the interaction term of the Holstein-Hamilton operator reads [30]

V = g
∑

Rσ

c+
RσcRσ [bR + b+

R ],

where g is the local electron-phonon coupling strength and cRσ and bR annihilate electronic
and phononic excitations, respectively, localized at the lattice sites R .

A discrete Fourier transform of the creation and annihilation operators with the help of
Eq. A.1 yields the momentum-space representation

V =
g√
N

∑

kk ′σq

1

N

∑

R

ei(k ′−k)Rc+
k ′σckσ [e−iqRbq + eiqRb+

q ] =
g√
N

∑

kσq

c+
k+qσckσϕq.

Normal Green function

First, Gkσ (τ) is evaluated. The zeroth term is just the Green function of non-interacting
electrons, the Matsubara representation of which is given in Eq. 3.15. First-order terms vanish
because ϕq does not conserve the particle number, unlike the unperturbed Hamilton operator
with respect to which the averages are taken. Eventually, in second order one finds

G2nd
kσ (τ) ∝

∑

k ′k ′′σσ ′qq′

∫ β

0

dτ ′
∫ β

0

dτ ′′ 〈. . . 〉0, (3.22)

〈. . . 〉0 = 〈T ckσ [τ ] c+
k ′+qσ ′ [τ

′] ck ′σ ′ [τ
′]ϕq[τ ′] c+

k ′′+q′σ ′′ [τ
′′] ck ′′σ ′′ [τ

′′]ϕq′ [τ
′′] c+

kσ [0]〉0
= 〈T ckσ [τ ] c+

k ′+qσ ′ [τ
′] ck ′σ ′ [τ

′] c+
k ′′+q′σ ′′ [τ

′′] ck ′′σ ′′ [τ
′′] c+

kσ [0]〉0
︸ ︷︷ ︸

〈el.〉0

〈Tϕq[τ ′]ϕq′ [τ
′′]〉0

︸ ︷︷ ︸
−D0

q(τ ′ − τ ′′) δ−q
q′

,

where the Green function D0
q(τ) of free phonons can be transformed into Eq. 3.16. Further

application of Wick’s theorem as stated in Eq. 3.20 to the electronic part 〈el.〉0 yields

− 〈T ckσ [τ ] c+
k ′′+q′σ ′′ [τ

′′]〉0 〈T ck ′σ ′ [τ
′] c+

k ′+qσ ′ [τ
′]〉0 〈T ck ′′σ ′′ [τ

′′] c+
kσ [0]〉0 δ0

qδ
0
q′ δ

σ
σ ′′ δk

k ′′

− 〈T ckσ [τ ] c+
k ′+qσ ′ [τ

′]〉0 〈T ck ′′σ ′′ [τ
′′] c+

k ′′+q′σ ′′ [τ
′′]〉0 〈T ck ′σ ′ [τ

′] c+
kσ [0]〉0 δ0

qδ
0
q′ δ

σ
σ ′ δk

k ′

+ 〈T ckσ [τ ] c+
k ′+qσ ′ [τ

′]〉0 〈T ck ′σ ′ [τ
′] c+

k ′′+q′σ ′′ [τ
′′]〉0 〈T ck ′′σ ′′ [τ

′′] c+
kσ [0]〉0 δ−q

q′ δσσ ′δ
σ
σ ′′ δ

k
k ′′δ

k−q

k ′

+ 〈T ckσ [τ ] c+
k ′′+q′σ ′′ [τ

′′]〉0 〈T ck ′′σ ′′ [τ
′′] c+

k ′+qσ ′ [τ
′]〉0 〈T ck ′σ ′ [τ

′] c+
kσ [0]〉0 δ

−q
q′ δσσ ′δ

σ
σ ′′ δ

k
k ′δ

k+q

k ′′

+ 〈T ck ′σ ′ [τ
′] c+

k ′+qσ ′ [τ
′]〉0 〈T ck ′′σ ′′ [τ

′′] c+
k ′′+q′σ ′′ [τ

′′]〉0 〈T ckσ [τ ] c+
kσ [0]〉0 δ0

qδ
0
q′

− 〈T ck ′σ ′ [τ
′] c+

k ′′+q′σ ′′ [τ
′′]〉0 〈T ck ′′σ ′′ [τ

′′] c+
k ′+qσ ′ [τ

′]〉0 〈T ckσ [τ ] c+
kσ [0]〉0 δ

−q
q′ δσ

′
σ ′′ δ

k ′+q

k ′′

+ 〈T ck ′σ ′ [τ
′] ck ′′σ ′′ [τ

′′]〉0 〈T c+
k ′′+q′σ ′′ [τ

′′] c+
k ′+qσ ′ [τ

′]〉0 〈T ckσ [τ ] c+
kσ [0]〉0 δ

−q
q′ δ−σ

′
σ ′′ δ−k ′

k ′′ .
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0

kσ kσ

k
′
σ

′

0

τ
′′

τ
′

τ

(a) “Hartree”

q

kσ

k−qσ

kσ

0

τ
′′

τ
′

τ

(b) “Fock”

q

−k−σ

q−k−σ k−qσ

kσ

0

τ
′′

τ
′

τ

(c) “Fock”, anomalous

0

kσ

k
′′
σ

′′
k

′
σ

′

0

τ
′′

τ
′

τ

(d) “glasses”

q

kσ

k ′
σ

′

k ′
+qσ

′′

0

τ
′′

τ
′

τ

(e) “porthole”

kσ

q

k ′
σ

′
−k ′

−σ
′

k ′
+qσ

′
−k ′

−q−σ
′

0

τ
′′

τ
′

τ

(f ) “porthole”, anomalous

Figure 3.1: Second-order processes that occur in the Feynman-Dyson perturbation series of Gkσ and
Fkσ in the Holstein model. The quantum numbers k ′, k ′′, σ ′, σ ′′ and q of internal lines are summed, time
parameters τ ′ and τ ′′ of internal vertices integrated over. Solid and wavy lines represent electrons and
phonons, respectively. The convention is followed that arrows point from creation towards annihilation.
Thus out- or inward double arrows stand for Cooper pairs of unspecified origin or destiny.

Substituting the corresponding non-interacting Matsubara-Green functions and performing
the summation to eliminate the Kronecker deltas, one obtains

∑

k ′ k ′′

σ ′ σ ′′
q q′

〈. . . 〉0 = −∑
k ′σ ′ G0

kσ (τ − τ ′′) G0
k ′σ ′ (0) G0

kσ (τ ′′) D0
0 (τ ′ − τ ′′) (3.1a)

−∑
k ′′σ ′′ G0

kσ (τ − τ ′) G0
k ′′σ ′′ (0) G0

kσ (τ ′) D0
0 (τ ′ − τ ′′)

+
∑

q G0
kσ (τ − τ ′) G0

k−qσ (τ ′ − τ ′′) G0
kσ (τ ′′) D0

q(τ ′ − τ ′′) (3.1b)

+
∑

q G0
kσ (τ − τ ′′) G0

k+qσ (τ ′′ − τ ′) G0
kσ (τ ′) D0

q(τ ′ − τ ′′)
+

∑
k ′k ′′σ ′σ ′′ G0

k ′σ ′ (0) G0
k ′′σ ′′ (0) G0

kσ (τ) D0
0 (τ ′ − τ ′′) (3.1d)

−∑
k ′σ ′q G0

k ′σ ′ (τ
′ − τ ′′) G0

k ′+qσ ′ (τ
′′ − τ ′) G0

kσ (τ) D0
q(τ ′ − τ ′′) (3.1e)

+
∑

k ′σ ′q F 0
k ′σ ′ (τ

′ − τ ′′) F̃ 0
k ′+qσ ′ (τ

′′ − τ ′) G0
kσ (τ) D0

q(τ ′ − τ ′′). (3.1f)

The corresponding Feynman diagrams are depicted in Fig. 3.1.

The last three terms represent disconnected diagrams. Calculating the second order of
〈S(β)〉0, which has been ignored so far, yields these very diagrams, except that the in- and
outgoing electron lines are missing. It turns out that every diagram part contained in the
denominator 〈S(β)〉0 of Eq. 3.18 will reappear in the nominator in a way that

〈T A[τ ] S(β) B[0]〉0 = 〈S(β)〉0〈T A[τ ] S(β) B[0]〉c.
0 ,

where 〈. . . 〉c.
0 is 〈. . . 〉0 less all terms corresponding to disconnected diagrams. Hence,

G(τ) = −〈T A[τ ] S(β) B[0]〉c.
0 .

In the following, all terms with D0
0 (τ ′ − τ ′′) are neglected since phonons with q = 0 are no

actual phonons but rather translations of the crystal as a whole or permanent strains [23, p. 82],
which shall not be considered.
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Performing the integrals, the remaining two terms turn out to be equivalent since τ ′ and τ ′′

occur in exchangeable positions. Transforming to Matsubara frequencies as per Eq. 3.12 yields

G2nd
kσ (iωn) =

∫ β

0

dτ eiωnτG2nd
kσ (τ)

= −g
2

N

∑

q

∫ β

0

dτ

∫ β

0

dτ ′
∫ β

0

dτ ′′ eiωnτG0
kσ (τ − τ ′)G0

k−qσ (τ ′ − τ ′′)G0
kσ (τ ′′)D0

q(τ ′ − τ ′′)

= − g2

Nβ

∑

q

∑

ijkm

G0
kσ (iωi)G

0
k−qσ (iωm)G0

kσ (iωj )D
0
q(iνk )× · · ·

· · · × 1

β

∫ β

0

dτ ei(ωn−ωi)τ 1

β

∫ β

0

dτ ′ ei(ωi−ωm−νk )τ ′ 1

β

∫ β

0

dτ ′′ ei(ωm−ωj+νk )τ ′′ .

Noting that differences of Matsubara frequencies of mixed and equal type are fermionic and
bosonic, respectively, and that for bosons the Matsubara-Fourier series is defined as an
ordinary Fourier series, one can apply the orthogonality relation given in Eq. A.2a. Thus

G2nd
kσ (iωn) = G0

kσ (iωn)Σ
0
kσ (iωn)G

0
kσ (iωn),

where the part in between is a self-energy contribution and given by

Σ0
kσ (iωn) = − g2

Nβ

∑

qm

G0
k−qσ (iωm)D0

q(iωn − iωm) = − g2

Nβ

∑

qm

G0
qσ (iωm)D0

k−q(iωn − iωm).

Gor’kov-Green function

Next, Fkσ (τ) is analyzed. The procedure is as above except that

〈el.〉0 = 〈T ckσ [τ ] c+
k ′+qσ ′ [τ

′] ck ′σ ′ [τ
′] c+

k ′′+q′σ ′′ [τ
′′] ck ′′σ ′′ [τ

′′] c−k−σ [0]〉0
has to be considered. With the help of Wick’s theorem this reduces to

− 〈T ckσ [τ ] c+
k ′+qσ ′ [τ

′]〉0 〈T ck ′σ ′ [τ
′] ck ′′σ ′′ [τ

′′]〉0 〈T c+
k ′′+q′σ ′′ [τ

′′] c−k−σ [0]〉0 δ−q
q′ δ

σ
σ ′δ
−σ
σ ′′ δ

k−q

k ′
δ

q−k

k ′′

− 〈T ckσ [τ ] c+
k ′′+q′σ ′′ [τ

′′]〉0 〈T ck ′′σ ′′ [τ
′′] ck ′σ ′ [τ

′]〉0 〈T c+
k ′+qσ ′ [τ

′] c−k−σ [0]〉0 δ
−q
q′ δ

−σ
σ ′ δ

σ
σ ′′ δ

−k−q

k ′
δ

k+q

k ′′
.

Substituting Green’s functions, one finds two contributions which again will prove equivalent:
∑

k ′k ′′σ ′σ ′′qq′

〈. . . 〉0 = −∑
q G0

kσ (τ − τ ′) F 0
k−qσ (τ ′ − τ ′′) G̃0

kσ (τ ′′) D0
q(τ ′ − τ ′′) (Fig. 3.1c)

−∑
q G0

kσ (τ − τ ′′) F 0
k+qσ (τ ′′ − τ ′) G̃0

kσ (τ ′) D0
q(τ ′ − τ ′′).

Bar the sign, the final result formally resembles the one for G2nd
kσ (iωn):

F 2nd
kσ (iωn) = G0

kσ (iωn)Σ
0
kσ (iωn) G̃

0
kσ (iωn) with Σ0

kσ (iωn) =
g2

Nβ

∑

qm

F 0
qσ (iωm)D0

k−q(iωn− iωm).

Auxiliary Green functions

For completeness, the corresponding results for G̃kσ (iωn) and F̃kσ (iωn) shall be derived as

well. From the properties given in Eqs. 3.21 it follows that G̃kσ (iωn) = −G−k−σ (−iωn),

[Gkσ (iωn)]
∗ = Gkσ (−iωn) and [Fkσ (iωn)]

∗ = F̃kσ (−iωn) as well as Dq(iωn) = D−q(−iωn). Thus

G̃2nd
kσ (iωn) = −G2nd

−k−σ (−iωn)

= G̃0
kσ (iωn)Σ

0
kσ (iωn) G̃

0
kσ (iωn), Σ0

kσ (iωn) = − g2

Nβ

∑

qm

G̃0
qσ (iωm)D0

k−q(iωn − iωm),

F̃ 2nd
kσ (iωn) = [F 2nd

kσ (−iωn)]
∗

= G̃0
kσ (iωn)Σ

0
kσ (iωn)G

0
kσ (iωn), Σ0

kσ (iωn) = +
g2

Nβ

∑

qm

F̃ 0
qσ (iωm)D0

k−q(iωn − iωm).
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3.5.2 Homogeneous electron gas

The interaction within an homogenous electron gas reads [10, p. 165]

V =
1

2

∑

kk ′σσ ′q

Uq c+
k+qσc+

k ′−qσ ′ck ′σ ′ckσ with Uq =
e2

V

4π

q2
.

Normal Green function

The first-order term of the Feynman-Dyson perturbation series for Gkσ (τ) is thus

G1st
kσ (τ) =

1

2

∑

k ′k ′′σ ′σ ′′q

Uq

∫ β

0

dτ ′ 〈. . . 〉c.
0 ,

〈. . . 〉0 = 〈T ckσ [τ ] c+
k ′+qσ ′ [τ

′] c+
k ′′−qσ ′′ [τ

′] ck ′′σ ′′ [τ
′] ck ′σ ′ [τ

′] c+
kσ [0]〉0

= 〈T ckσ [τ ] c+
k ′+qσ ′ [τ

′] ck ′σ ′ [τ
′] c+

k ′′−qσ ′′ [τ
′] ck ′′σ ′′ [τ

′] c+
kσ [0]〉0.

A comparison with Eq. 3.22, the corresponding formula for the Holstein model, reveals that

〈. . . 〉0 =
∑

q′

δ
−q
q′

∫ β

0

dτ ′′ δ(τ ′′ − τ ′+) 〈el.〉0,

where τ ′+ corresponds to a time infinitesimally later than τ ′ in order to ensure a causal time-
ordering. The Kronecker delta is actually superflous for being contained in each term of 〈el.〉0
anyway. Once the factorized expression has been rewritten in terms of Green functions, the
subscript plus sign can be dropped again. One finds

∑

k ′k ′′σ ′σ ′′q

Uq〈. . . 〉c.
0 = 2G0

kσ (τ − τ ′)

≡ Λkσ (0)︷ ︸︸ ︷[
U0

∑

k ′σ ′

G0
k ′σ ′ (0)−

∑

q

Uq G
0
k−qσ (0)

]
G0

kσ (τ ′).

As a function of Matsubara frequencies one has

G1st
kσ (iωn) =

∫ β

0

dτ eiωnτG1st
kσ (τ) =

∫ β

0

dτ

∫ β

0

dτ ′ eiωnτG0
kσ (τ − τ ′)Λkσ (0)G0

kσ (τ ′)

=
1

β

∑

ijm

G0
kσ (iωi)Λkσ (iωm)G0

kσ (iωj )
1

β

∫ β

0

dτ ei(ωn−ωi)τ 1

β

∫ β

0

dτ ′ ei(ωi−ωj )τ ′

= G0
kσ (iωn)Σ

0
kσ G

0
kσ (iωn) with Σ0

kσ =
U0

β

∑

k ′σ ′m

G0
k ′σ ′ (iωm)− 1

β

∑

qm

Uk−qG
0
qσ (iωm).

The two terms in Σ0
kσ , which is independent of frequency because the Coulomb interaction is

unscreened and assumed to be instantaneous, are the leading Hartree and Fock self-energy
contributions. The former may be compensated exactly by a homogenous positive background,
which is done in the so-called jellium model [10, p. 182].

Gor’kov-Green function

Analogously, during the calculation of F 0
kσ (τ) one obtains

∑

k ′k ′′σ ′σ ′′q

〈. . . 〉c.
0 = 2

∑

q

Uq G
0
kσ (τ − τ ′)F 0

k−qσ (0) G̃0
kσ (τ ′).

As in the case of the Holstein interaction, there is no anomalous Hartree contribution and,
apart from the sign the anomalous Fock contribution formally resembles the normal one:

F 1st
kσ (iωn) = G0

kσ (iωn)Σ
0
kσ G̃

0
kσ (iωn) with Σ0

kσ =
1

β

∑

qm

Uk−qF
0
qσ (iωm).
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3.5.3 Hubbard model

The Hubbard model further restricts the Coulomb interaction to occur only between electrons
at the same site, which must consequently have opposite spins because of the Pauli principle.
With the on-site Coulomb repulsion U , the corresponding operator in real space reads [30]

V = U
∑

R

c+
R↑c

+
R↓cR↓cR↑.

As for the Holstein model, a discrete Fourier transform using Eq. A.1 is applied, yielding

V =
U

N

∑

kk ′qq′

1

N

∑

R

ei(q+q′−k−k ′)Rc+
q′↑c

+
q↓ck ′↓ck↑

=
U

N

∑

kk ′q

c+
k+k ′−q↑c

+
q↓ck ′↓ck↑ =

U

N

∑

kk ′q

c+
k+q↑c

+
k ′−q↓ck ′↓ck↑.

Normal Green function

In terms of 〈el.〉0 from Eq. 3.22, the first order of the perturbation series for Gkσ (τ) reads

G1st
kσ (τ) =

U

N

∑

k ′k ′′σ ′σ ′′qq′

δ
↑
σ ′δ
↓
σ ′′δ
−q
q′

∫ β

0

dτ ′
∫ β

0

dτ ′′ δ(τ ′′ − τ ′+) 〈el.〉c.
0 .

Since interactions between electrons with the same spin are not considered in this model, an
electron cannot interact with itself and thus there is no Fock contribution. The Hartree part is

G1st
kσ (iωn) = G0

kσ (iωn)Σ
0
σ G

0
kσ (iωn) with Σ0

σ =
U

Nβ

∑

k ′m

G0
k ′−σ (iωm).

Gor’kov-Green function

Nevertheless, the analogous calculation of Fkσ (τ) yields the usual anomalous Fock contribution

F 1st
kσ (iωn) = G0

kσ (iωn)Σ
0
σ G̃

0
kσ (iωn) with Σ0

σ =
U

Nβ

∑

qm

F 0
qσ (iωm).

3.6 Self-energy

The full Green function is found by adding all diagrams, that are properly connected. But
which are valid connections? In Fig. 3.1, each diagram features three fermion lines, a single
boson line and two vertices at each of which one fermion is annihilated and another created
under the influence of one boson. This process is simultaneous and conserves both momentum
and spin. Leaving the anomalous lines and out of account for the moment, a
general diagram for this type of interaction contains

n× , (2n+ 1)× and 2n× with n ∈ N,

where the gray lines define the ‘contacts’. As a consequence, there is always one in- and one
outgoing side of a fermion line, which is not connected to a vertex.

It is convenient to define the self-energy Σ =
∑

i Σi as the sum of all irreducible diagram
parts Σi, i.e. such which can not be split into two disconnected parts by ‘cutting’ one fermion
line, because a way to generate all diagrams is to take all permutations of all possible subsets
of all irreducible parts and join them with fermion lines:

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + . . .

= G0 + G0Σ (G0 + G0ΣG0 + . . . )

= G0 + G0ΣG.
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This is knows as the Dyson equation which can also be formulated diagrammatically as

= + Σ
. (3.23a)

Since the ‘dressed’ G appears on both sides of the equation, the latter defines a self-consistency
problem. It can be solved iteratively, i.e. by calculating Gn+1 = G0 + G0ΣGn with the ‘bare’
G0 as the initial value. At each step a higher number of diagrams is considered. Multiplication
with G−1

0 from the left and G−1 from the right side yields

G−1 = G−1
0 − Σ.

The denominators of G and G0 contain the excitation energies of the full and the unperturbed
system, as can be seen in Eq. 3.13 and Eq. 3.15, respectively. Thus Σ acts as an energy
renormalization.

How can the full self-energy be obtained? It turns out that it can be derived from the
leading self-energy contributions, calculated in the previous section and shown in Fig. 3.1a and
3.1b, through renormalization of selected lines and even one vertex. This yields

Σ = +

Γ
, (3.23b)

where the full vertex Γ has been introduced. The Hartree term on the left can be either
neglected, as in the phonon case, or incorporated into the single-particle dispersion relation.

The dressed boson Green function, D say, obeys another Dyson equation,

= + Π
with

Π =

Γ
, (3.23c)

where the corresponding self-energy Π is referred to as the polarization.
Finally, the full vertex is given by the plain vertex together with vertex corrections, i.e. by

all diagram parts with can mediate a boson-induced fermionic transition:

= + + . . .
Γ

Unfortunately, there is no integral equation for Γ that could be formulated diagrammatically
with nothing but the building blocks introduced so far, since the vertex corrections involve a
functional derivative of the self-energy with respect to the dressed Green function. Representing
this part with a trapezoidal shape, one can write

= +
Γ

Γ

δΣ/δG

. (3.23d)

Eqs. 3.23, known as Hedin’s equations [31, Appendix A; 32, Eqs. 13.19], are all coupled
among themselves, which makes their solution a non-trivial task. In practice one often applies
certain approximations, which are presented in the following.
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3.6.1 GW approximation

A considable simplification consists in neglecting all vertex corrections, i.e. replacing Γ with
the bare vertex [31, Eq. A27, A28; 32, Eqs. 13.20, 13.21]. The corresponding diagram reads:

Σ = + with
Π =

. (3.24)

Since the dressed boson line is often denoted as W , this is known as the GW approximation
with reference to the resulting formula for the Fock part of Σ . With focus on Π and for historical
reasons it is also referred to as the random-phase approximation (RPA).

3.6.2 HF approximation

The self-energy can be further simplified by neglecting the polarization and thus replacing all
dressed boson lines with simple ones. This yields the Hartree-Fock approximation (HF):

Σ = + . (3.25)

Within HF, many-body problems can always be mapped onto effective single-particle problems.



Chapter 4

Eliashberg theory

Based on the results presented in the previous chapter, one can formulate a set of equations,
namely the Eliashberg equations, which determine self-energies for both normal and anomalous
Green functions, the latter being suitable order parameters for the superconducting state.

To that end it is convenient to combine the Green functions of interest into a 2× 2 matrix,
i.e. to use the Nambu formalism, which is presented in the first section.1 With that, the general
form of the Eliashberg equations on the imaginary frequency axis is derived, followed by two
common approximations which assume (1) a local self-energy and (2) a constant density of
states. Next, it is shown how the corresponding real-axis equations can be obtained through
analytic continuation. On this basis McMillan’s formula for the critical temperature is derived,
whereby the Coulomb pseudo-potential is introduced. This requires a more detailed discussion
of rescaling of the Coulomb interaction, leading to results which are also useful in dealing with
the chemical potential. After that, the whole formalism is generalized to multiple electronic
bands. The penultimate section is dedicated to the determination of the critical temperature via
linearized Eliashberg equations. Finally, it is demonstrated how imaginary-axis results can be
continued to the real axis by means of Padé approximants.

4.1 Nambu formalism

As found by Nambu [33], the Dyson equations for all four electronic Green functions introduced
at the beginning of Section 3.5 can be compactly formulated as a single matrix equation.
Diagrammatically, within the GW approximation and without Hartree contributions, it reads

[ [ [ [ [

[

[

] ] ] ] ]

]

]

0 0

0 0
=

=

≈

+

+ +

+

+

+

+

+

+

and formally, where quantum numbers and frequency arguments have been suppressed,
[
G F

F̃ G̃

]
=

[
G0 0

0 G̃0

]
+

[
G0 0

0 G̃0

] [
ΣG ΣF

Σ F̃ Σ G̃

] [
G F

F̃ G̃

]

=

[
G0 + G0Σ

GG + G0Σ
F F̃ G0Σ

GF + G0Σ
F G̃

G̃0Σ
F̃G + G̃0Σ

G̃F̃ G̃0 + G̃0Σ
F̃F + G̃0Σ

G̃G̃

]

≈
[
G0 + G0Σ

G
0 G0 G0Σ

F
0 G̃0

G̃0Σ
F̃
0 G0 G̃0 + G̃0Σ

G̃
0 G̃0

]
.

(4.1)

20
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and vanish, so does each term of the perturbation series of and .
However, a non-zero self-consistent solution of the above integral equations may still exist
[33, before Eq. 2.14], which is exactly the case in the superconducting state. It implies that
the number of electrons is not necessarily conserved, but this becomes insignificant in the
macroscopic limit [10, p. 423]. The critical temperature may be defined as the highest temperature
which allows the off-diagonal components to be non-zero [34, p. 37].

Giving names to the involved matrices, the Dyson equation may be written as G = G0+G0ΣG

or G−1 = G−1
0 − Σ , using inverse matrices. With the help of the two-component operators

ψk =

[
ck↑
c+
−k↓

]
and ψ

+
k =

[
a+

k↑ a−k↓,
]

the dressed (bare) Green function matrix is concisely defined as

G
(0)
k (iωn) = −

∫ β

0

dτ eiωnτ〈ψk (τ)ψ+
k (0)〉(0).

Introducing unit and Pauli matrices

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]

and the real scalar functions Zk (iωn), φ
(′)
k (iωn) and χk (iωn), the self-energy matrix is written as

Σ k (iωn) = iωn[1− Zk (iωn)]σ0 + φk (iωn)σ1 + φ′k (iωn)σ2 + χk (iωn)σ3 (4.2)

=

[
iωn[1− Zk (iωn)] + χk (iωn) φk (iωn)− iφ′k (iωn)

φk (iωn) + iφ′k (iωn) iωn[1− Zk (iωn)]− χk (iωn)

]
.

With [G0
k (iωn)]

−1 = iωnσ0 − (εk − µ)σ3, where µ is the chemical potential which for simplicity
has been dropped in the derivations of Section 3.2, the Dyson equation reads

G−1
k (iωn) = [G0

k (iωn)]
−1 − Σ k (iωn)

= iωnZk (iωn)σ0 − φk (iωn)σ1 − φ′k (iωn)σ2 − [εk − µ + χk (iωn)]σ3

=

[
iωnZk (iωn)− εk + µ − χk (iωn) −φk (iωn) + iφ′k (iωn)

−φk (iωn)− iφ′k (iωn) iωnZk (iωn) + εk − µ + χk (iωn)

]
.

Inversion yields

Gk (iωn) = −Θ−1
k (n){iωnZk (iωn)σ0 + φk (iωn)σ1 + φ′k (iωn)σ2 + [εk − µ + χk (iωn)]σ3}

= − 1

Θk (n)

[
iωnZk (iωn) + εk − µ + χk (iωn) φk (iωn)− iφ′k (iωn)

φk (iωn) + iφ′k (iωn) iωnZk (iωn)− εk + µ − χk (iωn)

]
,

where the denominator is given by

Θk (n) = − det G−1
k (iωn) = [ωnZk (iωn)]

2 + [εk − µ + χk (iωn)]
2 + φ2

k (iωn) + φ′2k (iωn).

The excitation energies are the poles of Gk (iωn), i.e. the zeros of Θk (n), which satisfy

(iωn)
2 =

[
εk − µ + χk (iωn)

Zk (iωn)

]2

+
φ2

k (iωn) + φ′2k (iωn)

Z 2
k (iωn)

≡ ε̃2
k (iωn) + |∆k (iωn)|2.

This identifies Zk (iωn) as a renormalization function, χk (iωn) as an energy shift and φ
(′)
k (iωn) as

an order parameter for the superconducting state just like the energy gap which turns out to be

∆k (iωn) =
φk (iωn)− iφ′k (iωn)

Zk (iωn)
.

1These derivations are guided by Section 3.2 of Ref. 35 and Section II of Ref. 36.



22 GENERAL EQUATIONS 4.2

4.2 General equations

Considering the Hubbard (Holstein) model, the approximation made in Eq. 4.1 is correct up
to the first (second) order of the perturbation series. From the analytic expressions derived in
Section 3.5.3 (3.5.1) on can thus derive the self-energy for the Hubbard-Holstein model,

Σ k (iωn) = Σ el.
k + Σ

ph.
k (iωn).

Within the HF approximation defined in Eq. 3.25 one can include any contribution from the
Coulomb interaction into the single-particle energies εk and therewith into the bare Green
function matrix G0. In doing so for the normal state [34, p. 37], the electronic part reads

Σ el.
k =

U

Nβ

∑

qm

[Gq(iωm)−Gn.
q (iωm)] ≈ U

Nβ

∑

qm

God.
q (iωm)

= − U

Nβ

∑

qm

φq(iωm)σ1 + φ′q(iωm)σ2

Θq(m)
,

where ‘n.’ denotes the normal-state Green function and ‘od.’ indicates that components which
are not ‘off-diagonal’ have been nullified. The above approximation becomes exact at the critical
temperature and is also valid below [34, p. 38] since the diagonal components are not very
sensitive to changes in temperature.

For the phononic part the GW approximation defined in Eq. 3.24 is used. In the case of the
electron-phonon interaction this is a rather good approximation since vertex corrections can be
neglected according to Migdal’s theorem [37]. Thus

Σ
ph.
k (iωn) = − g2

Nβ

∑

qm

σ3 Gq(iωm) σ3 Dk−q(iωn − iωm)

=
g2

Nβ

∑

qm

iωmZq(iωm)σ0 − φq(iωm)σ1 − φ′q(iωm)σ2 + [εq − µ + χq(iωm)]σ3

Θq(m)
Dk−q(iωn−iωm),

where the Pauli matrices in the first line swap the sign of the off-diagonal components.
From now on, T = β−1 is used rather than β. A coefficient comparison with Eq. 4.2 yields

the Eliashberg equations [4] for the Hubbard-Holstein model:

iωn[1− Zk (iωn)] =
T

N

∑

qm

iωmZq(iωm)

Θq(m)
g2Dk−q(iωn − iωm), (4.3a)

φ
(′)
k (iωn) = − T

N

∑

qm

φ
(′)
q (iωm)

Θq(m)

[
g2Dk−q(iωn − iωm) + U

]
, (4.3b)

χk (iωn) =
T

N

∑

qm

εq − µ + χq(iωm)

Θq(m)
g2Dk−q(iωn − iωm). (4.3c)

Since φk (iωn) and φ′k (iωn) obey identical equations and enter the common denominator Θq(iωm)
only in form of the absolute value |φk (iω)− iφ′k (iωn)|2, the phase of φk (iω)− iφ′k (iωn) is left
undetermined. This gauge invariance allows to set φ′k (iωn) = 0 [34, p. 37; 33, around Eq. 2.20].

Using the definitions

µC = n(µ0)U, λq(n) = −n(µ0)g2Dq(iνn), n(ε) =
N(ε)

N
, N(ε) =

∑

k

δ(ε − εk ), (4.4)

where n(ε) is the density of states per spin and unit cell and µ0 is the free-particle chemical
potential, one can equivalently write

Σ k (iωn) =
T

N(µ0)

∑

qm

Θ−1
q (m)

{
· · ·

· · · {−iωmZq(iωm)σ0 + φq(iωm)σ1 − [εq − µ + χq(iωm)]σ3}λk−q(n−m)− φq(iωm)σ1µC

}
,
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which yields a more common formulation of the Eliashberg equations:

Zk (iωn) = 1 +
T

N(µ0)

1

ωn

∑

qm

ωmZq(iωm)

Θq(m)
λk−q(n−m), (4.5a)

φk (iωn) =
T

N(µ0)

∑

qm

φq(iωm)

Θq(m)

[
λk−q(n−m)− µC

]
, (4.5b)

χk (iωn) = − T

N(µ0)

∑

qm

εq − µ + χq(iωm)

Θq(m)
λk−q(n−m). (4.5c)

It is often convenient to work with the spectral representations

Dq(iνn) = −
∫ ∞

0

dω
2ωBq(ω)

ν2
n + ω2

,

λq(n) =

∫ ∞

0

dω
2ωα2Fq(ω)

ν2
n + ω2

with α2Fq(ω) = n(µ0)g2Bq(ω).

Bq(ω) and α2Fq(ω) are phonon and electron-phonon spectral functions, respectively. The
name of the latter is composed of the traditional names α for the matrix element g of the
electron-phonon coupling [37, Eq. 1, e.g.] and F (ω) for the phonon density of states [34, p. 16],
which is basically the q-average of the spectral function Bq(ω).

In order to conserve the particle number, the chemical potential µ has to be determined
self-consistently alongside the self-energy components. This is discussed in detail in Section 4.7.

4.3 Common approximations

The numerical solution of the Eliashberg equations in the form presented in Eq. 4.5 involves a
high computational workload, especially because of the summations over the Brillouin zone. It
is therefore common to apply certain approximations.

4.3.1 Local self-energy

If the electron-phonon coupling strength λq(n) ≡ λ(n) is independent of q, the self-energy
Σ k (iωn) ≡ Σ (iωn) and its components Z , φ and χ are independent of k , i.e. local. This is
achieved, say, by taking a Fermi-surface average 〈〈α2F 〉εk =µ〉εk+q=µ [34, Eqs. 3.23, 3.24], where

〈fk〉εk =µ =

∑
k δ(εk − µ) fk∑

k δ(εk − µ)
,

or by assuming the simplest spectral function B(ω) = δ(ω − ωE)− δ(ω + ωE), where ωE is a
single Einstein frequency which is already renormalized. In the latter case,

D(iνn) = − 2ωE

ν2
n + ω2

E

and λ(n) =
2ωE n(µ0)g2

ν2
n + ω2

E

≡ λ

1 +
[
νn
ωE

]2
,

where λ ≡ λ(0) = 2n(µ0)g2/ωE is the parameter which will subsequently be used to define
the electron-phonon coupling strength and D(iνn) resembles the bare phonon Green function
D0(iνn) for the Hamilton operator

H0 = ωE

∑

R

b+
RbR = ωE

∑

qq′

1

N

∑

R

ei(q′−q)Rb+
q′bq = ωE

∑

q

b+
q bq.

It is now possible to replace the q-summation by an energy integral:

Σ (iωn) = T
∑

m

∫ ∞

−∞
dε

N(ε)

N(µ0)
Θ−1(ε,m)

{
· · ·

· · · {−iωmZ (iωm)σ0 + φ(iωm)σ1 − [ε − µ + χ(iωm)]σ3}λ(n−m)− φ(iωm)σ1µC

}
(4.6)
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with Θ(ε, n) = [ωnZ (iωn)]
2 +φ2(iωn) + [ε− µ+ χ(iωn)]

2. The local Eliashberg equations read

Z (iωn) = 1 +
T

ωn

∑

m

∫ ∞

−∞
dε

N(ε)

N(µ0)

ωmZ (iωm)

Θ(ε,m)
λ(n−m), (4.7a)

φ(iωn) = T
∑

m

∫ ∞

−∞
dε

N(ε)

N(µ0)

φ(iωm)

Θ(ε,m)
[λ(n−m)− µC], (4.7b)

χ(iωn) = −T
∑

m

∫ ∞

−∞
dε

N(ε)

N(µ0)

ε − µ + χ(iωm)

Θ(ε,m)
λ(n−m). (4.7c)

4.3.2 Constant density of states

Save for the factor N(ε), which is unspecified at this point, the integrands in Eq. 4.6 converge
towards zero as ε diverges from µ−χ(iωm) ≈ µ0. Therefore it may be acceptable to approximate
N(ε) by a constant N(µ0) [38, below Eq. 26; 34, p. 17; 36, Section II.B], which is visualized in
Fig. 4.1, so that the integration can be performed analytically. With the help of

1

π

∫ ∞

−∞
dx

z

x2 + z2
= sgn Re z and

∫ ∞

−∞
dx

x

x2 + z2
= 0, (4.8)

where vanishing and non-vanishing integrals are understood as Cauchy principal values or
follow from the residue theorem, respectively, and writing ∆(iωn) = φ(iωn)/Z (iωn), this yields

Σ (iωn) = πT
∑

m

{−iωmσ0 + ∆(iωm)σ1}λ(n−m)− ∆(iωm)σ1µC√
ω2
m + ∆2(iωm)

and thus the CDOS Eliashberg equations

Z (iωn) = 1 +
πT

ωn

∑

m

ωm√
ω2
m + ∆2(iωm)

λ(n−m), (4.9a)

∆(iωn) =
πT

Z (iωn)

∑

m

∆(iωm)√
ω2
m + ∆2(iωm)

[λ(n−m)− µC]. (4.9b)

The chemical potential and the energy shift have disappeared from the equations and the
density of states only enters through the coupling strengths.

−4t µ0 0 2t 4t

0
0
.2

0
.4

ε

n
(ε

)/
t−

1

(a) ω = t. At higher frequencies, exact and
approximate integrand may differ considerably.

−4t µ0 0 2t 4t

0
1

2
3

ε

n
(ε

)/
t−

1

(b) ω = t/10. At lower frequencies, points for
numerical integration must be chosen carefully.

Figure 4.1: The CDOS approximation is exemplified by its application to the scalar product of the density
of states n(ε) of a square tight-binding lattice, to be discussed in Section 5.1.2, and a Lorentz function:

1

π

∫ ∞

−∞
dε

n(ε)

n(µ0)

ω

ω2 + ε2
( ) ≈ 1

π

∫ ∞

−∞
dε

ω

ω2 + ε2
( ) .

The exact integral bears a close resemblance to those which occur in the local self energy in Eq. 4.6.
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4.4 Real-axis equations

In this section the analytic continuation of the self-energy and the corresponding Eliashberg
equations, which is complicated by the summation over Matsubara frequencies, is performed
within the CDOS approximation.

The first step is to withdraw the dependence on Matsubara frequencies from the Green
function using a spectral representation. Undoing the energy integration and applying Eq. 3.10,

∫ ∞

−∞
dεGε(iωn) = − 1

π

∫ ∞

−∞
dω′

1

iωn − ω′
Im

∫ ∞

−∞
dεGε(ω

′
+),

where ω′+ = ω′ + i0+. The Green function matrix, analytically continued to arbitrary frequency
arguments ω and dependent on energy εk rather than wave number k , reads

Gε(ω) =
ωZ (ω)σ0 + φ(ω)σ1 + εσ3

ω2Z 2(ω)− φ2(ω)− ε2
.

Using Eqs. 4.8 one finds, in accordance with Eq. 2.19a of Ref. 39,

− 1

π

∫ ∞

−∞
dεGε(ω) =

ωZ (ω)σ0 + φ(ω)σ1√
−ω2Z 2(ω) + φ2(ω)

= i
ωZ (ω)σ0 + φ(ω)σ1

†
√
ω2Z 2(ω)− φ2(ω)

= i
ωσ0 + ∆(ω)σ1

∗
√
ω2 − ∆2(ω)

.

For the integral to be correct, the first square must have a positive real part. Since a
multiplication with i corresponds to a rotation by π

2 in the complex plane, the second square
root must be taken from the upper half-plane [39, Eq. 2.19b]. Accordingly the domain of the
third square root is the upper half-plane rotated clockwise by the complex argument of Z (ω).

Using Im[i . . . ] = Re[ . . . ], the phononic part of the self-energy reads

Σ ph.(iωn) = T
∑

m

∫ ∞

−∞
dε σ3 Gε(iωm) σ3 λ(n−m)

= T

∫ ∞

−∞
dω′ Re

[
ω′+σ0 − ∆(ω′+)σ1

∗
√
ω′2+ − ∆2(ω′+)

] ∫ ∞

0

dω′′ α2F (ω′′)
∑

m

1

iωm − ω′
2ω′′

(ωn − ωm)2 + ω′′2
.

It is now possible to eliminate the summation over Matsubara frequencies [34, Eqs. 3.40, 3.41],

T
∑

m

1

iωm − ω′
2ω′′

(ωn − ωm)2 + ω′′2
=
f+(−ω′) + f−(ω′′)

iωn − ω′ − ω′′
+
f+(ω′) + f−(ω′′)

iωn − ω′ + ω′′
≡ Ω(iωn, ω

′, ω′′),

and to analytically continue the self-energy, which yields

Σ ph.(ω) =

∫ ∞

−∞
dω′ Re

[
ω′+σ0 − ∆(ω′+)σ1

∗
√
ω′2+ − ∆2(ω′+)

] ∫ ∞

0

dω′′ α2F (ω′′)Ω(ω,ω′, ω′′).

With the identity [34, Eq. 12.4]

T
∑

m

1

iωm − ω′
= −1

2
[1− 2f+(ω′)] (4.10)

the electronic part of the self-energy is analogously found to be

Σ el.(ω) = µCT
∑

m

∫ ∞

−∞
dεGod.

q (ω) = −µC

2

∫ ∞

−∞
dω′ Re

[
∆(ω′+)σ1

∗
√
ω′2+ − ∆2(ω′+)

]
[1− 2f+(ω′)].

Thus for Σ (ω) = Σ ph.(ω) + Σ el.(ω) the so-called real-axis Eliashberg equations, which are
actually defined for the whole complex plane, read

Z (ω) = 1− 1

ω

∫ ∞

−∞
dω′ Re

[
ω′+

∗
√
ω′2+ − ∆2(ω′+)

] ∫ ∞

0

dω′′ α2F (ω′′)Ω(ω,ω′, ω′′),

∆(ω) = − 1

Z (ω)

∫ ∞

−∞
dω′ Re

[
∆(ω′+)

∗
√
ω′2+ − ∆2(ω′+)

]{
[1− 2f+(ω′)]

µC

2
+

∫ ∞

0

dω′′ α2F (ω′′)Ω(ω,ω′, ω′′)

}
.
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Noting that λ(n) = λ(−n), one can easily verify that even functions Z (iωn) and ∆(iωn) are
perfectly compatible with Eqs. 4.9. This property is inherited by the corresponding real-axis
quantities. More general: Let f (ω) represent any of the functions ω2, Z (ω) and ∆(ω). They all
have in common that they turn into their complex conjugate if the sign of either the real or
imaginary part of their argument changes [40, Eq. A5]. Formally,

f (−ω) = f (ω) and f (ω∗) = f∗(ω). (4.11)

The same applies to functions which are derived by means of the four basic arithmetical
operations, such as ω2 − ∆2(ω). Besides, complex conjugation of a number reflects its possible
square roots across the axes of the complex plane. As a consequence, if ω is reflected across the
real axis, the same is true for the Z (ω)-dependent domain of ∗

√· · · and thus for ∗
√
ω2 − ∆2(ω).

This symmetry is now used to fold the negative half of the range of the ω′-integral onto the
positive one, which yields the final form of the real-axis Eliashberg equations [41, Eqs. 2, 3]:

Z (ω) = 1− 1

ω

∫ ∞

0

dω′ Re

[
ω′+

∗
√
ω′2+ − ∆2(ω′+)

]
× · · ·

· · · ×
∫ ∞

0

dω′′ α2F (ω′′) [Ω(ω,ω′, ω′′) +Ω(ω,−ω′, ω′′)], (4.12a)

∆(ω) = − 1

Z (ω)

∫ ∞

0

dω′ Re

[
∆(ω′+)

∗
√
ω′2+ − ∆2(ω′+)

]{
[1− 2f+(ω′)] µC + · · ·

· · ·+
∫ ∞

0

dω′′ α2F (ω′′) [Ω(ω,ω′, ω′′)−Ω(ω,−ω′, ω′′)]
}
. (4.12b)

The ω in the denominator of Eq. 4.12a is cancelled since, where braces enclose alternatives,

Ω(ω,ω′, ω′′)±Ω(ω,−ω′, ω′′) = Ω±(ω,ω′, ω′′)±Ω±(ω,−ω′, ω′′),

Ω±(ω,ω′, ω′′) = 2

{
ω

ω′ + ω′′

}
f+(−ω′) + f−(ω′′)

ω2 − (ω′ + ω′′)2
.

4.5 McMillan’s formula

In 1968, William L. McMillan establishes a formula to estimate the transition temperature Tc

of superconductors as a function of only three characteristic parameters: an average phonon
frequency 〈ω〉, the electron-phonon coupling strength λ and the Coulomb pseudo-potential µ∗.2

This section provides a review of the original work [1].
The starting point is a linearized form of the real-axis Eliashberg equations, which emerges

at Tc where ∆(ω) is infinitesimal and negligible relative to ω. Introducing two cutoff energies,
the maximum phonon frequency ω0 and the electronic bandwidth EB, and assuming that Z (ω′+)
lies in the upper half-plane or on the positive real axis so that ∗

√
ω′2+ = ω′+, Eq. 4.12 becomes

Z (ω) = 1− 1

ω

∫ ∞

0

dω′
∫ ω0

0

dω′′ α2F (ω′′) [Ω(ω,ω′, ω′′) +Ω(ω,−ω′, ω′′)], (4.13a)

∆(ω) = − 1

Z (ω)

∫ ∞

0

dω′
Re[∆(ω′)]

ω′

{
Θ(EB − ω′) [1− 2f+(ω′)] µC + · · · (4.13b)

· · ·+
∫ ω0

0

dω′′ α2F (ω′′) [Ω(ω,ω′, ω′′)−Ω(ω,−ω′, ω′′)]
}
. (4.13c)

The idea is to find an analytic expression which roughly approximates Tc and can be used
to fit numerical results. To that end, a simple trial function for ∆(ω) is introduced, which shall
solve the Eliashberg equations, i.e. be self-consistent, at least at low and high frequencies:

∆(ω) =

{
∆0 for |ω| < ω0,

∆∞ otherwise,

where ∆0, ∆∞ ∈ R. Several approximate contributions to ∆(0) and ∆(∞) are taken into account.

2The latter two quantities may be obtained from the density of states measured in a tunneling experiment via the
inversion method proposed in Section V of Ref. 3.
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1. Phononic contribution to ∆(0) for ω′ < ω0. Neglecting ω′ relative to ω′′ yields

Ω(0, ω′, ω′′)−Ω(0,−ω′, ω′′) ≈ − 2

ω′′
[1− 2f+(ω′)],

∆(1)(0) ≈ ∆0

Z (0)

∫ ω0

0

dω′

ω′
[1− 2f+(ω′)]

︸ ︷︷ ︸
≈ ln(ω0/Tc)

2

∫ ω0

0

dω′′

ω′′
α2F (ω′′)

︸ ︷︷ ︸
≡ λ

,

where the electron-phonon coupling strength λ ≡ λ(0) has reappeared. The integral approx-
imation will be justified in Section 4.6.2, observing that 1−2f+(ω) = tanh ω

2T ≈ 2
π

arctan ω
T

.

2. Phononic contribution to ∆(0) for ω′ ≥ ω0. Neglecting ω′′ relative to ω′ yields

Ω(0, ω′, ω′′)−Ω(0,−ω′, ω′′) ≈ − 2

ω′
[1 + 2f−(ω′′)],

∆(2)(0) ≈ ∆∞λ

Z (0)

∫ ∞

ω0

dω′

ω′2
︸ ︷︷ ︸
= 1/ω0

2

λ

∫ ω0

0

dω′′ α2F (ω′′)

︸ ︷︷ ︸
≡ 〈ω〉

[1 + 2f−(ω′′)]︸ ︷︷ ︸
≈ 1

,

where an average phonon frequency 〈ω〉 has been defined.

3. Phononic contribution to ∆(∞). This part vanishes for Ω(∞, ω′, ω′′)−Ω(∞,−ω′, ω′′) = 0.

4. Electronic contribution to ∆(0). With the same approximations as in ∆(1)(0) and ∆(2)(0),

∆(3)(0) = − µC

Z (0)

[
∆0

∫ ω0

0

dω′

ω′
[1− 2f+(ω′)]

︸ ︷︷ ︸
≈ ln(ω0/Tc)

+∆∞

∫ EB

ω0

dω′

ω′
︸ ︷︷ ︸

= ln(EB/ω0)

[1− 2f+(ω′)]︸ ︷︷ ︸
≈ 1

]
.

5. Electronic contribution to ∆(∞). Analogous to the calculation of ∆(3)(0),

∆(∞) ≈ − µC

Z (∞)

[
∆0 ln

ω0

Tc
+ ∆∞ ln

EB

ω0

]
.

The renormalization at low frequencies is assumed to be Z (0) = Z (iω0) = 1 + λ, a result
which will be derived in Eq. 4.26, whereas for high frequencies one simply has Z (∞) = 1. It is
further required that ∆(0) ≡ ∆0 and ∆(∞) ≡ ∆∞. The latter equation may be solved for ∆∞,
which yields

∆∞ = −µ∗∆0 ln
ω0

Tc
with

1

µ∗
=

1

µC
+ ln

EB

ω0
, (4.14)

where the Coulomb pseudo-potential µ∗ has been defined. Hence,

∆0 = ∆(1)(0) + ∆(2)(0) + ∆(3)(0) =
∆0

1 + λ
[λ− λµ∗〈ω〉/ω0 − µ∗] ln

ω0

Tc
.

This equation can be solved for Tc. The resulting formula is then generalized by introducing
three fit parameters, A, B and C say, in the course of which the the maximum phonon frequency
ω0 is replaced by the, essentially synonymous, Debye frequency Θ:

Tc = ω0 exp

[
− 1 + λ

λ− λµ∗〈ω〉/ω0 − µ∗
]
→ Θ

A
exp

[
− B (1 + λ)

λ− Cλµ∗ − µ∗
]
.

For several fixed Tc and µ∗ the linearized Eliashberg equations are now solved for λ. De
facto, F (ω′′) is chosen to be the phonon density of states of niobium [5] cut off below 100 K and
α2, which determines λ, adjusted to obtain self-consistency.

These results are used to determine A, B and in a second step C via linear regression:

ln
Θ

Tc

µ∗=0
= lnA+ B

1 + λ

λ
and

1

µ∗

[
λ+

B (1 + λ)

ln(ATc/Θ)

]
= 1 + Cλ. (4.15)

The values found by McMillan read A = 1.45, B = 1.04 and C = 0.62. He also states that for
niobium Θ = 277 K and 〈ω〉 = 230 K, which allows the alternative pre-factor 〈ω〉/1.20 in place
of Θ/1.45, which should be preferred according to Dynes [42] for a more universal validity.
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4.6 Rescaled Coulomb pseudo-potential

The introduction of the Coulomb pseudo-potential3 in the preceding section requires a more
detailed analysis of the Coulomb interaction as occurring in the Eliashberg theory. Before that,
however, it is convenient to put the local and CDOS Eliashberg equations (Eqs. 4.7 and 4.9)
into a form which is more suitable for both further analysis and computational implementation.

As already stated in Eq. 4.11, one can assume the solutions of the Eliashberg equations to
be even function of frequency. Exploiting this symmetry it is possible to fold the negative half
of the Matsubara sum onto the positive one, just like it was done with the integrals in Eq. 4.12.

For local self-energies this yields

Z (iωn) = 1 +
T

ωn

∞∑

m=0

∫ ∞

−∞
dε

N(ε)

N(µ0)

ωmZ (iωm)

Θ(ε,m)
Λ−(n,m),

φ(iωn) = T

∞∑

m=0

∫ ∞

−∞
dε

N(ε)

N(µ0)

φ(iωm)

Θ(ε,m)
[Λ+(n,m)− 2µC],

χ(iωn) = −T
∞∑

m=0

∫ ∞

−∞
dε

N(ε)

N(µ0)

ε − µ + χ(iωm)

Θ(ε,m)
Λ+(n,m)

and, under the additional assumption of a constant density of states,

Z (iωn) = 1 +
πT

ωn

∞∑

m=0

ωmZ (ωm)√
[ωmZ (iωm)]2 + φ2(iωm)

Λ−(n,m),

φ(iωn) = πT

∞∑

m=0

φ(iωm)√
[ωmZ (iωm)]2 + φ2(iωm)

[Λ+(n,m)− 2µC].

The occurring electron-phonon coupling matrices are defined as

Λ±(n,m) = λ(n−m)± λ(n+m+ 1).

Solving the above equations on a computer requires a truncation of the infinite summation
over Matsubara frequencies. For the phonon part this is unproblematic since it has a natural
cutoff through λ(n), which decays rapidly with growing magnitude of νn. The Coulomb part,
however, does not depend on frequency and thus couples terms regardless of the difference of
their frequency arguments. As a consequence, the partial sum does converge very slowly – or
not at all – with increasing cutoff. The following procedures circumvents this.4

4.6.1 Introduction of cutoff frequency

Let φ(iωn) = φph.(iωn) + φel. and consider the Eliashberg equation for φel.,

φel. = −2µCT

∞∑

m=0

∫ ∞

−∞
dε

N(ε)

N(µ0)

φ(iωm)

Θ(ε,m)
. (4.16)

As will be seen from the results presented in Fig. 5.3, there is a cutoff frequency ωN above
which one can safely assume φph.(iωm) ≈ χ(iωm) ≈ 0, φel. ≪ ωm and Z (iωm) ≈ 1 such that

−2µCT

∞∑

m=N

∫ ∞

−∞
dε

N(ε)

N(µ0)

φ(iωm)

Θ(ε,m)
≈ −2µCT

∞∑

m=N

∫ ∞

−∞
dε

N(ε)

N(µ0)

φel.

ω2
m + (ε − µ)2

.

3According to Schrieffer [43, p. 187] the formula for µ∗ was first given in 1959 by Bogoliubov, Tolmachev and
Shirkov [44, p. 83]. Nevertheless, the quantity is sometimes referred to as the Morel-Anderson pseudo-potential with
reference to Ref. 45 from 1962.

4Similar derivations are given by Schrieffer [43, pp. 185–188] and Allen and Mitrović [34, Section 9].
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Bringing this part to the left-hand side of Eq. 4.16 yields

[
1 + 2µCT

∞∑

m=N

∫ ∞

−∞
dε

N(ε)

N(µ0)

1

ω2
m + (ε − µ)2

]
φel. = −2µCT

N−1∑

m=0

∫ ∞

−∞
dε

N(ε)

N(µ0)

φ(iωm)

Θ(ε,m)

or equivalently, introducing a rescaled Coulomb pseudo-potential µ∗(N),

φel. = −2µ∗(N)T

N−1∑

m=0

∫ ∞

−∞
dε

N(ε)

N(µ0)

φ(iωm)

Θ(ε,m)
,

1

µ∗(N)
=

1

µC
+ 2T

∞∑

m=N

∫ ∞

−∞
dε

N(ε)

N(µ0)

1

ω2
m + (ε − µ)2

.

The truncation of the Matsubara sum has thus been compensated by rescaling the Couloumb
interaction. For a computational solution for µ∗ it is further convenient to replace the infinite
sum by a closed form. This is done by means of the identity [34, Eq. A.14]

N−1∑

n=0

x

(n+ 1
2 )2 + x2

= Im[ψ( 1
2 + ix)− ψ(N + 1

2 + ix)],

where ψ(x) = Γ ′(x)/Γ (x) is the digamma function which asymptotically approaches the natural
logarithm for large arguments, as found via the Stirling formula [34, Appendix A]. Consequently,

∞∑

n=N

x

(n+ 1
2 )2 + x2

= lim
M→∞

{
Im[ψ(N + 1

2 + ix)− ψ(M + 1
2 + ix)]

}

≈ lim
M→∞

{
Im[log(N + 1

2 + ix)− log(M + 1
2 + ix)]

}

= lim
M→∞

{
arg(N + 1

2 + ix)− arg(M + 1
2 + ix)

︸ ︷︷ ︸
→ 0

}
= arctan

x

N + 1
2

and thus, removing the singularity at ε = µ, which is not known in advance and approximated
by µ0 to obtain a formula which can be applied before the Eliashberg equations are solved,

1

µ∗(N)
=

1

µC
+

1

π

∫ ∞

−∞
dε

N(ε)

N(µ0)

{
1

ε−µ arctan ε−µ
ωN

for ε 6= µ,
1
ωN

otherwise.
(4.17)

4.6.2 Rectangular density of states

For the special case of a density of states which is constant on the interval [−D,D] and zero
elsewhere and assuming a chemical potential µ = 0 [34, p. 39], the formula for µ∗ reduces to

1

µ∗(N)
=

1

µC
+ R (N) with R (N) =

2

π

∫ D

0

dε

ε
arctan

ε

ωN
.

By means of substitution and partial integration one can further evaluate

R (N) =
2

π

∫ D
ωN

0

dx

x
arctan x =

arctan D
ωN

π/2
ln

D

ωN
− 2

π

∫ D
ωN

0

dx ln x

1 + x2

︸ ︷︷ ︸
2

π

∫ ln D
ωN

−∞

x dx

e−x + ex
= − 1

π

∫ ∞

ln D
ωN

x dx

cosh x

.

Since the hyperbolic cosine growths exponentially with the magnitude of its arguments while
the arc tangent approaches π/2, for the reasonable assumption that D ≫ ωN one finds

R (N) =

≈ 1︷ ︸︸ ︷
arctan D

ωN

π/2
ln

D

ωN
+

≈ 0︷ ︸︸ ︷
1

π

∫ ∞

ln D
ωN

x dx

cosh x
so that

1

µ∗(N)
=

1

µC
+ ln

D

ωN
. (4.18)

For the sake of completeness it shall also be mentioned that an exact evaluation of R (N) is
possible in terms of dilogarithms:

R (N) =
1

iπ

∫ i D
ωN

0

dx

x
[ln(1 + x)− ln(1− x)] ≡

Li2
(
i D
ωN

)
− Li2

(
− i D

ωN

)

iπ
.
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4.6.3 Constant density of states

One ought to think that the latest results should be directly applicable to the case of a constant
density of states which extends over the whole energy domain. The problem is, however, that
within the approximations made µ∗ would vanish as D →∞, regardless of the cutoff chosen.

A well-defined rescaling prescription can be found by applying the steps carried out in
Section 4.6.1 directly to the CDOS Eliashberg equation

φel. = −2µ∗(M)πT
M−1∑

m=0

φ(iωm)√
[ωmZ (iωm)]2 + φ2(iωm)

, (4.19)

where an upper cutoff at ωM has been introduced in the first place and the appropriate yet
unknown µ∗(M) is used. The idea is to truncate the Coulomb part at a lower frequency ωN ,
above which φph.(iωm) ≈ 0, φel. ≪ ωm and Z (iωm) ≈ 1 is still a valid assumption. One has

−2µ∗(M)πT

M−1∑

m=N

φ(iωm)√
[ωmZ (iωm)]2 + φ2(iωm)

≈ −2µ∗(M)πT

M−1∑

m=N

φel.

ωm

which leads to

φel. = −2µ∗(N)πT

N−1∑

m=0

φ(iωm)√
[ωmZ (iωm)]2 + φ2(iωm)

, µ∗(N) =
µ∗(M)

1 + 2µ∗(M)πT
∑M−1

m=N ω
−1
m

.

As above, one can further simplify

2πT

M−1∑

m=N

|ωm|−1 =

M−1∑

m=N

1

m+ 1
2

= ψ(M + 1
2 )− ψ(N + 1

2 ) ≈ log
M + 1

2

N + 1
2

= ln
ωM

ωN
,

where Eq. A.7 of Ref. 34 has been used. Hence [34, Eq. 9.14],

1

µ∗(N)
=

1

µ∗(M)
+ ln

ωM

ωN
.

From comparison with Eq. 4.18 it follows that the CDOS approach reproduces the expected
results if the non-rescaled µC is used in combination with a cutoff frequency equal to the virtual
band-width D. The CDOS approximation thus requires a frequency cutoff.

Since D is theoretically infinite and practically unknown it is eliminated by the assumption
that it be equal to the band-width EB in the derivation of McMillan’s equation. Combination
of the results from Eqs. 4.14 and 4.18 yields the formula to be used within the imaginary-axis
CDOS Eliashberg equations [2, Eq. 13]:

1

µ∗(N)
=

1

µ∗
+ ln

ω0

ωN
. (4.20)

4.7 Chemical potential

If the chemical potential in the Eliashberg equations is assumed to be constant, the particle
number is not necessarily conserved. Following Ref. 46, with the help of Dirichlet’s theorem
for Fourier series and Eq. 3.12 one finds

〈c+
k ck〉 = 1− 〈ck c+

k 〉 =
1 + 〈c+

k ck〉 − 〈ck c+
k 〉

2

=
1 + Gk (0−) + Gk (0+)

2
=

1

2
+ Gk (0) =

1

2
+

1

β

∑

n∈Z
Gk (iωn)

and thus the particle density or occupation number per unit cell

n =
1

N

∑

kσ

〈c+
k ck〉 = 1 +

2

βN

∑

kn

Gk (iωn) = 1− 2

βN

∑

kn

εk − µ + χk (iωn)

Θk (n)
,

not to be confused with the summation index, where terms with iωnZk (iωn) have cancelled.
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4.7.1 Free particles

Using Eq. 4.10 it can be shown that for Zk (iωn) = 1 and φk (iωn) = χk (iωn) = 0 the free-particle
occupation number is reproduced:

n = 1− 2

βN

∑

kn

iωn + εk − µ
ω2
n + (εk − µ)2

= 1− 2

βN

∑

kn

1

εk − µ − iωn
=

2

N

∑

k

f+(εk )

= 2

∫ ∞

−∞
dε n(ε) f+(ε) = 1−

∫ ∞

−∞
dε n(ε) tanh

ε − µ
2T

.

This equation could be solved for µ using a bisection method or the fixed-point equation

µ =
n− 1 +

∫∞
−∞ dε ε w(ε)∫∞

−∞ dε w(ε)
with w(ε) = n(ε)

{
1

ε−µ tanh ε−µ
2T for ε 6= µ,

1
2T otherwise.

(4.21)

For half-filling, i.e. n = 1, this gives simply the center of mass of the weight function w(ε).

4.7.2 Interacting particles

The calculation of the occupation number from the results of the imaginary-axis Eliashberg
equations is complicated by the cutoff of the Matsubara sums. A reasonable approximation
consists in replacing the unknown part by the corresponding free-particle expression:

n ≈ 1− 4T

∫ ∞

−∞
dε n(ε)

[
N−1∑

n=0

ε − µ + χ(iωn)

Θ(ε, n)
+

∞∑

n=N

ε − µ
ω2
n + (ε − µ)2

︸ ︷︷ ︸
≈ 1

2πT
arctan

ε − µ
ωN

]
,

where the intermediate result from Section 4.6.1 has been used. Solving this equation for the
left appearance of µ yields a manageable fixed-point equation, namely

µ ≈
n−1
4T +

∫∞
−∞ dε n(ε)

[ ∑N−1
n=0

ε+χ(iωn)
Θ(ε,n) + 1

2πT arctan ε−µ
ωN

]
∫∞
−∞ dε n(ε)

∑N−1
n=0

1
Θ(ε,n)

. (4.22)

Within this work it shall not be resolved if Eqs. 4.21 and 4.22 guarantee convergence for all
possible densities of states, self-energies and starting points. However, in all cases studied
convergence at a sufficient rate has been observed.

4.8 Multi-band equations

At this point the most important aspects of Eliashberg theory for local self-energies at arbitrary
temperatures have been introduced. A straightforward generalization of the involved equations
is with respect to multiple electronic bands which will turn out to be equivalent to allowing for
Fermi-pocket resolved anisotropy.

Since a band index is a quantum number just as the wave number, both can be treated
on the same footing. Thus, in Eqs. 4.5 one simply has to complement the natural occurrences
of the wave numbers k and q, even though they have been averaged out as in the case of
the Coulomb interaction, with band indices i and j , respectively. In doing so, the self-energy
components searched for are defined for each band separately and scalar coupling strengths
become matrices describing intra- and inter-band interactions.
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The corresponding local Eliashberg equations read

Zi(iωn) = 1 +
T

ωn

∑

j

N−1∑

m=0

∫ ∞

−∞
dε

nj (ε)

nj (µ0)

ωmZj (iωm)

Θj (ε,m)
Λ−ij (n,m), (4.23a)

φi(iωn) = T
∑

j

N−1∑

m=0

∫ ∞

−∞
dε

nj (ε)

nj (µ0)

φj (iωm)

Θj (ε,m)
[Λ+
ij (n,m)− 2µ∗ij (N)], (4.23b)

χi(iωn) = −T
∑

j

N−1∑

m=0

∫ ∞

−∞
dε

nj (ε)

nj (µ0)

ε − µ + χj (iωm)

Θj (ε,m)
Λ+
ij (n,m). (4.23c)

The common denominator and the electron-phonon coupling matrices are defined as

Θi(ε, n) = [ωnZi(iωn)]
2 + φ2

i (iωn) + [ε − µ + χi(iωn)]
2,

Λ±ij (n,m) = λij (n−m)± λij (n+m+ 1).

nj (ε) denotes the density of states for the j-th band, normalized with respect to integration
over ε and summation over j to obtain an occupation number n ∈ [0, 2] defined for N →∞ as

n = 1− 4T
∑

i

N−1∑

n=0

∫ ∞

−∞
dε ni(ε)

ε − µ + χi(iωn)

Θi(ε, n)
.

Again, the density of states is also part of the definition of the electron-phonon coupling strength
λij ≡ λij (0) = −nj (µ0)g2

ij D(0). For symmetric electron-phonon matrix elements gij = gji, which
can be taken for granted, it follows that λij /λji = nj (µ0)/ni(µ0) [35, Eq. 3.64].

Analogously, for constant band densities of states one finds [47, Eqs. 1, 2]

Zi(iωn) = 1 +
πT

ωn

∑

j

N−1∑

m=0

ωm√
ω2
m + ∆2

j (iωm)
Λ−ij (n,m), (4.24a)

∆i(iωn) =
πT

Zi(iωn)

∑

j

N−1∑

m=0

∆j (iωm)√
ω2
m + ∆2

j (iωm)
[Λ+
ij (n,m)− 2µ∗ij (N)]. (4.24b)

µ∗ij (N) is assumed to be rescaled appropriately for the respective set of equations.

4.8.1 Alternate interpretation

In the multi-band case the summations over band indices are already part of the underlying
interaction Hamilton operators and find their way through the Feynman-Dyson perturbation
theory into the Eliashberg equations. However, it is also possible to yield formally identical
equations within the single-band formalism.

The basic idea of the local approximation is to reduce the dependence on wave numbers to
a mere energy-dependence. Essentially,

∑

k

f (k) ≈
∫ ∞

−∞
dε

N(ε)︷ ︸︸ ︷∑

k

δ(ε − εk ) f (ε).

In the special case where f (k) is a function of εk only, the above equation becomes exact.
Otherwise f (ε) must be an appropriate constant-energy average. The alternate idea is now to
split the domain of the band-structure, e.g. the first Brillouin zone, into subdomains for which
separate densities of states are determined [48; 49] and the corresponding averages taken:

∑

k

f (k) ≈
∑

i

∫ ∞

−∞
dε

Ni(ε)︷ ︸︸ ︷∑

k∈Di
δ(ε − εk ) fi(ε) where

⋃

i

Di = Brillouin zone.

In this case, i indicates subdomains of the reciprocal space rather than bands. This procedure
may in turn be generalized with respect to further quantum numbers such as real band indices.
Most generally, the indices i number arbitrary disjoint subsets of electronic states.
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4.9 Linearized equations

At Tc, where the order parameter ∆(iωm) is infinitesimal, and in the normal state, where it
is zero, it can be neglected relative to ωm. Analogous to Eqs. 4.13, the real-axis equations
used by McMillan, the CDOS Eliashberg equations on the imaginary axis and for multiple
electronic bands, as given in Eqs. 4.24, assume the following linear form:

Zi(iωn) = 1 +
1

2n+ 1

∑

j

N−1∑

m=0

Λ−ij (n,m), (4.25a)

∆i(iωn) =
1

Zi(iωn)

∑

j

N−1∑

m=0

∆j (iωm)

2m+ 1
[Λ+
ij (n,m)− 2µ∗ij (N)]. (4.25b)

At this point the equation for Zi(iωn) is neither coupled to the equation of ∆i(iω) nor must it be
solved self-consistently. For N →∞ one can further evaluate

Zi(iωn) = 1 +
1

2n+ 1

∑

j

n∑

m=−n
λij (m) = 1 +

1

2n+ 1

∑

j

[
λij + 2

n∑

m=1

λij (m)
]
. (4.26)

This yields the matrix equation ∆ · K = ∆, component-wise written as [34, Eq. 11.10]

∆i(iωn) =
∑

j

N−1∑

m=0

Kij (n,m)∆j (iωm),

Kij (n,m) =
1

2m+ 1
[Λ+
ij (n,m)− δijδnmDN

i (n)− 2µ∗ij (N)],

DN
i (n) =

∑

j

N−1∑

m=0

Λ−ij (n,m)
N=∞
=

∑

j

[
λij + 2

n∑

m=1

λij (m)
]
.

(4.27)

Since at temperatures greater than, equal to or less than Tc multiplication with the kernel K

ought to or diminish, maintain or amplify the magnitude of the order parameter ∆, respectively,
Tc is defined as the temperature at which the greatest eigenvalue of K crosses unity [34, p. 47].

Before the analysis can go more into detail, it is necessary to introduce the direct matrix
product and its spectral properties, which will be done in the following section.

4.9.1 Direct product

The direct product or Kronecker product A⊗B of the r × c matrix A and the R × C matrix B

is the rc × RC matrix defined by

(A⊗ B)ij,nm = AinBjm,

where ij, nm can be interpreted e.g. as iR + j, nC + m if all indices are zero-based. This
definition also holds for column vectors if these are considered as, say, N × 1 matrices.

With the help of the identity

(A⊗ B) · (C ⊗D) = (A · C )⊗ (B ·D)

which is easily proved component-wise,

[(A⊗ B) · (C ⊗D)]ij,pq =
∑

nm

(A⊗ B)ij,nm (C ⊗D)nm,pq =
∑

nm

AinBjmCnpDmq

=
∑

n

AinCnp
∑

m

BjmDmq = (A · C )ip (B ·D)jq = [(A · C )⊗ (B ·D)]ij,pq,

one can show that, if the eigenvalue equations A · α = aα and B · β = bβ hold,

(A⊗ B) · (α ⊗ β) = (A · α)⊗ (B · β) = (aα)⊗ (bβ) = ab(α ⊗ β). (4.28)

The eigenvectors and -values of the direct product of two matrices are thus the direct and
normal products of the respective eigenvectors and -values of the individual matrices.
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4.9.2 Effective scalar coupling strengths

Below, two approximations are presented which allow to map the matrices describing multi-band
coupling strengths onto scalar values which lead to similar critical temperatures and, above
all, may also be inserted into McMillan’s equation. It shall be noted that for all non-scalar
couplings there are always innumerable sets of effective scalar parameters which yield exactly
the same critical temperature – it is just that there are no simple rules to generate them.

Non-renormalized

Supposing that there is no energy renormalization, i.e. Zi(iωn) = 1 for all bands and frequencies,
which constitutes a very rough approximation, the kernel reduces to

Kij (n,m) =
1

2m+ 1
[Λ+
ij (n,m)− 2µ∗ij (N)].

Assuming further that the matrices λ and µ∗(N) describing the intra- and inter-band electron-
phonon coupling strengths and rescaled Coulomb pseudo-potentials are proportional, i.e.
µ∗ij (N) = c λij with c ≥ 0, one can write Kij (n,m) = λijQ(n,m) with Q(n,m) independent of
band indices. This is nothing but a direct matrix product:

K = λ⊗Q.

Hence, applying Eq. 4.28, the largest eigenvalue of K is the product of the largest eigenvalues
of Q and λ (in magnitude). As a consequence, if there exists a single-band system with positive
coupling strengths λ and µ∗(N) which exhibits the same critical temperature as a multi-band
system with coupling matrices λ and µ∗(N), then the further would be given by the greatest
eigenvalues of the latter if the renormalization were unity. For two bands and µ∗(N) = 0,

λ =
1

2

[
λ11 + λ22 +

√
(λ11 − λ22)2 + 4λ12λ21

]
.

Cutoff-independent

Another approach takes the mapping searched for as independent of the cutoff frequency ωN .
This allows to derive it for the most simple case where N = 1. Consequently, n = m = 1 and

Kij = 2λij − δij
∑

k

λik − 2µ∗ij (N),

where λij (1) ≈ λij has been assumed in addition. For two bands and µ∗ij (N) = 0,

K =

[
λ11 − λ12 2λ12

2λ21 λ22 − λ21

]

the greatest eigenvalue of which gives the desired approximate effective coupling strength:

λ =
1

2

[
λ11 − λ12 − λ21 + λ22 +

√
(λ11 − λ12 + λ21 − λ22)2 + 16λ12λ21

]
.

4.9.3 Beyond CDOS

If the band densities of states are not considered to be constant, Eqs. 4.23 have to be solved. The
only simplification emerging at Tc is that the order parameter can be neglected in the common
denominator which becomes Θi(ε, n) = [ωnZi(iωn)]

2 + [ε − µ + χi(iωn)]
2. As a consequence,

renormalization function and energy shift are decoupled from the order parameter and may thus
be determined independently. Having done so, these normal-state properties, together with the
self-consistent chemical potential, are inserted into the remaining equation which yields

φi(iωn) =
∑

j

N−1∑

m=0

Kij (n,m)φj (iωm),

Kij (n,m) = Tc

∫ ∞

−∞
dε

nj (ε)

nj (µ0)

Λ+
ij (n,m)− 2µ∗ij (N)

[ωmZj (iωm)]2 + [ε − µ + χj (iωm)]2
.

(4.29)
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4.10 Padé approximants

The imaginary-axis Eliashberg equations are more convenient for a computational implementa-
tion than their real-axis counterparts since they involve sums over already discrete Matsubara
frequencies rather than integrals the domains of which are yet to be discretized, which is always
accompanied by some loss of accuracy. In addition, no complex quantities are involved.

Because real-axis results can be obtained from imaginary-axis results via analytic continua-
tion as per Eq. 3.13, being interested in the former it may still be worth it to take a detour via
the latter. Hereby the problem arises, that an analytic continuation can only be applied to
some analytic expression, whereas the numerical results are generally just a finite set of sample
points. In the following, a solution proposed by Vidberg and Serene in 1977 [6] is presented.

Let Σ (iωn) with n ∈ {0 . . . N−1} act as a placeholder for any of the self-energy components
resulting from the Eliashberg equations and derived quantities. The idea is to interpolate this
numerical result by a rational function to which the analytic continuation can then be applied.
This Padé approximant may be written as a continued fraction

Σ (ω) =
c0

1 +
c1 (ω − iω0)

1 +
c2 (ω − iω1)

. . .

with cn = 0 for n ≥ N, (4.30)

where the non-zero coefficients have to be determined so that all imaginary-axis results are
reproduced. For this purpose, Vidberg and Serene propose the following algorithm:

g0(iωm)← Σ (iωm) for all m.

For n = 0 . . . N − 2:

gn+1(iωm)← gn(iωn)− gn(iωm)

(iωm − iωn)gn(iωm)
for m > n.

cn ← gn(iωn) for all n.

For each ω ∈ R of interest:

x0(ω)← (0 1).

x1(ω)← (c0 1).

For n = 1 . . . N − 1:

xn+1(ω)← xn(ω) + cn(ω − iωn−1) xn−1(ω).

Σ (ω)← [xN (ω)]1
[xN (ω)]2

.

Having determined the coefficients, this algorithm does not calculate the continued fraction
as stated in Eq. 4.30 but rather its representation as a fraction of two polynomials via a
forward-recurrence formula. This would be favorable if not only the final but also intermediate
approximants [xn(ω)]1/[xn(ω)]2 taking only n < N points into account were needed. However,
being only interested in the N-point Padé approximant, a backward-recurrence algorithm which
simply calculates the continued fraction successively from ‘tail to head’ is preferable for both
requiring less operations and being numerically more stable [50]:

For each ω ∈ R of interest:

Σ (ω)← 1.

For n = 1 . . . N − 1 in reversed order:

Σ (ω)← 1 +
cn (ω − iωn−1)

Σ (ω)
.

Σ (ω)← c0

Σ (ω)
.

The actual implementation for this work can be consulted in Section B.4.



Chapter 5

Single-band results

Having presented most of the analytic framework, the following chapters will be dedicated to
the presentation of more specific, mostly numerical results. For now, only a single electronic
band is taken into account.

To make a start, the self-energy components which constitute the solution of the Eliashberg
equations will be presented as functions of both Matsubara and real frequencies. Before
that, however, the analytic continuation by means of Padé approximants shall be validated
and an exemplary density of states to work with introduced. Next, several convergence tests
are performed which guarantee the accuracy of the following results: McMillan’s equation is
adapted to the special case of Einstein phonon spectra and subsequently tested as part of
a series of critical-temperature benchmarks. Finally, the influence of density of states and
particle number is discussed in detail.

5.1 Preliminary considerations

5.1.1 Validation of Padé approximant

In this section the suitability of Padé approximants to perform an analytic continuation of
numerical data is tested using the example of the only self-energy component of interest for
which an analytic expression is available, namely the renormalization function in the normal
state within the CDOS approximation.

With the help of Eq. A.7 of Ref. 34 one can easily extend the domain of Eq. 4.26 from the
Matsubara frequencies on the imaginary axis to the whole complex plane. For a single band,

Z (ω) = 1 +
πiT

ω
λ

{
1 +

ωE

2πiT

[
ψ( 1

2 + ω+ωE

2πiT )− ψ( 1
2 + ω−ωE

2πiT ) + ψ(1− ωE

2πiT )− ψ(1 + ωE

2πiT )
]}
.
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Figure 5.1: Exact normal-state CDOS renormalization together with selected Padé approximants for an
electron-phonon coupling strength λ = 1, a phonon frequency ωE = 20 meV and a temperature T = 1 K.
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Figure 5.2: Properties of the square tight-binding lattice.

In Fig. 5.1, Z (ω) is plotted on both the real and the imaginary axis. In the former case it is
complemented with some Padé approximants which interpolate the imaginary-axis result Z (iωn)
at all Matsubara frequencies ωn ∈ (0, ωmax.). All beyond the respective ωmax. is discarded.

On the imaginary axis the renormalization is real and bell-shaped with the center at the
origin. On the real axis it is more complicated: There is a peak with an imaginary discontinuity
at the phonon frequency ±ωE. Below that, the imaginary part vanishes and the real part
increases with frequency starting slightly above 1 + λ. Beyond that, real and imaginary parts
decay towards unity and zero, respectively.

It turns out that the quality of the Padé approximant increases with ωmax., as expected.
Already for small multiples of ωE the exact and approximate curves coincide to a high degree.

5.1.2 Square lattice

In order to perform calculations beyond the approximation of a constant density of states, some
kind of model or experimental data which provides the necessary electronic structure is required.
Throughout the present work, a tight-binding model of a square lattice will be applied for this
purpose. The unit cell with a single basis atom is depicted in Fig. 5.2a, where arrows represent
the allowed electronic transitions. The defining Hamilton operator in first quantization reads

H = −t
∑

R

[|R + t1〉+ |R − t1〉+ |R + t2〉+ |R − t2〉]〈R |,

where the sum goes over all lattice sites R = n1t1 +n2t2 with n1, n2 ∈ Z at which the Wannier
states |R〉 are localized. t is the nearest-neighbor coupling parameter, t1 = [a 0] and t2 = [0 a]
are the translation vectors of length a, the lattice constant.

An expansion into Bloch states |k〉 with k = [kx ky] via the Fourier transform

|R〉 =

∫
dk e−ikR |k〉,

where the integration is e.g. over the first Brillouin zone, leads to the dispersion relation

ε(k) = −2t [cos(kxa) + cos(kya)]

a contour plot of which is given in Fig. 5.2b.
Finally, the corresponding density of states per spin and unit cell, shown in Fig. 5.2c, reads

n(ε) =
K

(
1− ( ε4t )

2
)

2π2t
where K (x) =

∫ π
2

0

dφ
[
1− x sin2(φ)

]− 1
2

is the complete elliptic integral of the first kind [10, Eq. 4.146 and 4.147]. It features a van
Hove singularity at the Fermi level ε = 0 at half-filling, at which it diverges logarithmically
[51, Eq. 7]. Since the density of states at the chemical potential of the non-interacting system
enters in the definition of the coupling strengths in Eq. 4.4, which have to be finite, well-defined
quantities, a reduced particle number, namely quarter-filling, is chosen in the following.
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Figure 5.3: Imaginary- and real-axis self-energy components at different temperatures for a square-lattice
density of states with an electronic bandwidth of 2 eV at quarter-filling, a phonon frequency ωE = 20 meV,
an electron-phonon coupling strength λ = 1, a Coulomb pseudo-potential µ∗ = 0.1 and a cutoff frequency
ωN = 100ωE. Note that the displayed frequency ranges do not correspond to the cutoff.

5.2 Self-energy on real and imaginary axis

In Fig. 5.3 numerical solutions of the local Eliashberg equations stated in Eqs. 4.7 are shown
together with their Padé approximants as presented in Section 4.10, analytically continued to
the real axis, for different temperatures. For all parameter sets used in this work, the qualitative
appearance of the resulting curves is the same:1

On the imaginary-axis not only the renormalization Z (iωn), in accordance with Fig. 5.1,
but also the energy gap ∆(iωn) and shift χ(iωn) are bell-shaped and centered at the origin.
The first-mentioned are always concave functions whereas the sign of the latter may change,
resulting in a convex curve as in the example.

Asymptotically, the energy gap approaches the negative or vanishing constant Coulomb
contribution given in Eq. 4.16, the renormalization goes to unity and the energy shift vanishes,
but much more slowly than the former two.

1The imaginary-axis curves resemble those displayed in Refs. 51 and 52.
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Figure 5.4: Order parameters. The temperature dependence of leading Matsubara and measurable gap is
shown for the same parameter set as in Fig. 5.3, except for a lower cutoff frequency ωN = 15ωE. The
phase transition in characterized by a diverging number of iterations needed to reach self-consistency.

The maybe most characteristic property of the energy gap is its temperature dependence,
further discussed in the subsequent section, through which it is qualified as an order parameter
for the superconducting state. With rising temperature it decreases with increasing speed
towards zero, which is reached, by definition, at the critical temperature. In principal, this
process affects the magnitude rather than the shape of the curve, resulting in a common zero of
the displayed family of curves or, more precisely, of their analytic continuations, since naturally
the solution is discrete on the imaginary axis and does not include this very point in general.
Over the same temperature range, the other two quantities barely change.

On the real axis the shapes turn out to be more complicated. The renormalization Z (ω)
basically resembles the analytic one, shown in Fig. 5.1, the properties of which have already
been discussed. One of them, namely the vanishing imaginary part at frequencies below the
renormalized phonon frequency, is recognized in the energy gap ∆(ω) and shift χ(ω) as well.
The former even features the aforementioned peaks, in the vincinity of which the exact behavior of
the Padé approximants is untrustworthy for being very sensitive to parameter changes. Beyond
the peak, the real and imaginary parts of the energy gap describe arches of opposite orientation.
The asymptotes of all quantities are the same as on the imaginary-axis, although in the case of
the energy shift this does not become apparent from the depicted detail.

5.2.1 Temperature dependence of order parameter

Leaving the invariant shape of the energy gap on the imaginary frequency axis out of account,
the temperature dependence of its magnitude, represented by its value at the first Matsubara
frequency, is shown in Fig. 5.4, supplemented by the corresponding curve for the energy gap
which is actually measurable in experiments and defined by the fixed-point equation [6, Eq. 3a]

∆0 = Re[∆(∆0)]. (5.1)

Both curves turn out to be very similar: Starting at absolute zero, they remain nearly constant
at first and subsequently become ever steeper approaching the critical temperature at which
they vanish. They resemble the well-known BCS result, exemplified in Fig. 2.1, which changes
exponentially and like a square root near T = 0 and Tc, respectively [10, Eq. 11.60].

Fig. 5.4 also shows how the number of iterations needed to obtain a self-consistent solution
of the Eliashberg equations increases drastically at the critical temperature. This is due to the
magnitude of the energy gap converging much slower than its shape [6, p. 185]. Enforcing the
normal-state property ∆ = 0 yields similar convergence rates at all temperatures, Tc included.
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Figure 5.5: Comparison to expose cutoff-induced errors in the components of the self-energy. Except for
the cutoff and a temperature T = 1 K, the settings are as for the results displayed in Figs. 5.3 and 5.4.

5.3 Convergence tests

It is now investigated how the results are influenced by the choices of, first, the cutoff frequency
of the Matsubara sums and, secondly, the number of points used for the quadrature of the energy
integrals, which are both mandatory for a computational implementation of the Eliashberg
equations. This knowledge is necessary to obtain confidence in all subsequent results.

5.3.1 Convergence of self-energy with cutoff frequency

In Fig. 5.5 the self-energy components on the imaginary axis are shown for different cutoff
frequencies. Since a low temperature has been chosen, the Matsubara frequencies lie sufficiently
close together to use line rather than scatter plots.

It turns out that the sensitivities of different quantities to the cutoff frequency differ. The
energy shift proves to be affected most, especially near the cutoff itself where it decays
spontaneously. A similar behavior, but much less pronounced, is found for the renormalization,
in contrast to the energy gap which exhibits the correct asymptotes. Regarding the magnitude
it becomes evident that the energy gap is favored by a low cutoff whereas renormalization and
energy shift are suppressed.

With the above results in mind one could argue that an application of the imaginary-axis
Eliashberg equations at low frequencies, where the computational workload is small, is pointless,
at least being interested in more than qualitative tendencies. Nevertheless, when determining
the critical temperature, the artifacts of the cutoff in the frequency dependence of the self-energy
will be of minor importance.

5.3.2 Convergence of Tc with cutoff frequency

The quantity to be handled with most care regarding the cutoff is the Coulomb pseudo-potential
already discussed in Section 4.6.1, which led to the introduction of a rescaled quantity. In order
to point out the benefits of the latter, in Fig. 5.6 the critical temperature is shown as a function
of the cutoff frequency for both a constant and a rescaled Coulomb pseudo-potential.

Depending on whether the density of states is assumed to be constant or not, different
rescaling prescriptions have to be used. For the CDOS approximation, Eq. 4.20 can be directly
applied. Otherwise one has to resort to Eq. 4.17 which unfortunately involves the original
coupling constant µC rather than McMillan’s Coulomb pseudo-potential µ∗. Hence, in order
to obtain roughly comparable results in both cases, whenever the density of states is taken
into account the first step is to estimate µC from µ∗ which is done via Eq. 4.14, where EB is
assumed to be half the electronic bandwidth.
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Figure 5.6: Convergence with cutoff for a phonon frequency ωE = 20 meV, an electron-phonon coupling
strength λ = 1 and a Coulomb pseudo-potential µ∗ = 0.1. In each panel, the latter is rescaled differently.

It is confirmed that within the CDOS approximation the rescaling is required in order to yield
convergent results. This does not apply to the Eliashberg equations in general since within
nothing but the local approximation one has convergence in any case; it is just considerably
faster if an appropriate rescaling is performed. The CDOS convergence rate is not reached
though.

An enhancement of the critical temperature with increasing cutoff frequency for a constant
Coulomb pseudo-potential is in accordance with the fact that an appropriately rescaled Coulomb
pseudo-potential behaves similarly, since the Coulomb interaction opposes superconductivity
[53, p. 1038]. Having performed the rescaling, one is left with a decreasing curve which may be
ascribed to results for the order parameter presented in Fig. 5.5.

Until now is has been taken for granted that the cutoff is defined in terms of frequency
rather than a specific number of Matsubara frequencies. The latter is thus defined by the cutoff
frequency and the temperature together. Hence, in Fig. 5.6 it varies both along the horizontal
and the vertical axis. The reason for this definition of the cutoff is that, as stated above, the
shape of the self-energy as a function of frequency does not change much with temperature.

5.3.3 Convergence of Tc with energy resolution

The remaining quantity by which the accuracy of numerical solutions is limited, is the number
of points used for discretizing the integrands in Eqs. 4.7. The quadrature is performed using
the trapezoidal rule and the energy points chosen equally spaced.

As can be seen in Fig. 5.7, the occurring errors are not as predictable as in Fig. 5.6, where
the critical temperature was shown to converge with the cutoff frequency following continuous
curves. Instead, the resulting critical temperatures are scattered apparently at random (of cause
each calculation alone is deterministic) around the correct value, loosely bounded by radii
which shrink with increasing resolution.

As already anticipated in the caption of Fig. 4.1b, the errors are larger for lower phonon
frequencies, which correspond to lower temperatures at which the Lorentz functions to be
integrated over are sharper and thus only resolved accurately if neighboring sample points are
very close. Theoretically, it is also possible to guarantee the same precision for all temperatures
with a constant number of points. But this requires an intelligent, non-equidistant sampling.
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Figure 5.7: Convergence with the number of integration points for two different phonon frequencies.
Constants are defined as in Fig. 5.4.

5.4 McMillan’s equation for Einstein spectra

Having shown that the numerical results are stable and satisfy the qualitative expectations, the
next step is a direct comparison with a well-established result, namely McMillan’s equation for
the critical temperature. It was derived starting from the CDOS Eliashberg theory, so that the
latter should reproduce the results of the former at least approximately.

If there is any justifiable discrepancy between the original and the present work it is
due to the electron-phonon spectral function or, more precisely, the phonon density of states.
Whereas McMillan performed his calculations for niobium, now a simple Einstein spectrum
is assumed. Interestingly, in place of the peak at the Einstein frequency in the real-axis
self-energy displayed in Fig. 5.3, the analogous result of McMillan [1, Fig. 4] features two
peaks which also appear in the phonon density of states of niobium.

Back on topic, the aim of this section is to derive an alternative Tc formula which differs
from McMillan’s only by the three fit parameters which are adjusted to an Einstein spectrum,
i.e. a single phonon frequency, ωE = 20 meV in this case.

To that end, the first step is to determine critical temperatures for different electron-phonon
coupling strengths and Coulomb pseudo-potentials. (McMillan calculated λ for different Tc and
µ∗.) The results are listed in Table 5.1. The second step is to perform the linear regressions
for Eqs. 4.15 applying the usual least-squares method. This is visualized in Fig. 5.8. The fit
parameters turn out to be A = 0.94± 0.03, B = 1.11± 0.01 and C = 0.74± 0.01. Hence,

T E
c =

ωE

0.94
exp

[
− 1.11 (1 + λ)

λ− 0.74λµ∗ − µ∗
]
.

λ
µ∗

0.000 0.050 0.100 0.150 0.200 0.250

0.6 12.995 8.735 5.235 2.648 1.028 0.253
0.8 20.255 15.420 11.024 7.238 4.220 2.067
1.0 26.602 21.537 16.746 12.344 8.474 5.283
1.2 32.122 26.922 21.934 17.215 12.867 9.021
1.4 37.005 31.684 26.548 21.641 17.013 12.762
1.6 41.401 35.950 30.680 25.621 20.807 16.295

Table 5.1: Tc ± 0.001 K for different λ and µ∗ with ωE = 20 meV.
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Figure 5.8: Combined representation of McMillan’s original data and lines of best fit together with their
newly calculated counterparts for an Einstein phonon spectrum.

5.5 Critical-temperature benchmarks

At this point a comparison of local and CDOS Eliashberg theory as well as McMillan’s formula,
both original and adjusted, can be performed. Therefor, Tc is calculated for different ωE, λ and
µ∗ whereby only one parameter is varied at a time and the others are held constant. The results
are presented in Fig. 5.9.

Altogether, a very good agreement can be reported. As expected, the adjusted version
of McMillan’s formula does best in reproducing the critical temperature according to CDOS
Eliashberg theory for Einstein spectra. The original formula works comparably good but it
slightly underestimates the dependence on the Coulomb pseudo-potential and already fails at
lower electron-phonon coupling strengths. However, it is well known that McMillan’s formula
intrinsically underestimates Tc for large λ [2]. It predicts the upper bound

lim
λ→∞

Tc =
〈ω〉
A

exp

[
− B

1− Cµ∗
]
,

whereas Eliashberg theory states an asymptotic behavior proportional to
√
λ [35, Eq. 3.56].

The differences between the results of the Eliashberg theory for constant and square-lattice
densities of states are acceptable, especially if the heuristic mapping from µ∗ to µC is taken
into account. There is no general solution to resolve this ambiguity. Nevertheless, it still
remains unclear to what extend the critical temperature is determined by the shape of the
density of states in the vicinity of the chemical potential, since the square lattice at quarter
filling, which has only been analyzed so far, is rather benign in this regard. This question is
further investigated in the following section.

Apart from the comparison of the different theories, Fig. 5.9 gives a good overview of the
general dependence of the critical temperature on the characteristic variables. Large values
of λ and ωE favor superconductivity, while µ∗ opposes it. Concerning ωE, the proportionality
which is immanent in McMillan’s formula is perfectly confirmed. It is responsible for the isotope
effect and may be explained by the fact that ωE enters the Eliashberg equations only through
λ(n) or the phononic Green function, the ‘broadening’ of which is determined by T /ωE.
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Figure 5.9: Comparison of the critical temperatures according to McMillan’s formula in its original
form and with its constants adjusted to an Einstein phonon spectrum as well as the local Eliashberg

equations, either within the approximation of a constant density of states or for a square lattice with an
electronic bandwidth of 2 eV at quarter-filling. As constants, an Einstein frequency ωE = 20 meV, an
electron-phonon coupling λ = 1 and a Coulomb pseudo-potential µ∗ = 0.15 are chosen. The Matsubara

sum is cut off at ωN = 15ωE. 2001 points were used for the numerical solution of the energy integral.

5.6 Energy dependence

The final survey regarding the single-band Eliashberg theory is concerned with the dependence
of the critical temperature on the shape of the density of states near the chemical potential,
where the superconducting pairing takes place.

This is done by ‘scanning’ the entire domain of the density of states of the square lattice by
varying the chemical potential of the non-interacting system with respect to which the coupling
strengths are defined. In addition to the critical temperature the change in the chemical
potential (in order to conserve the particle number) and the leading value of the energy shift
are determined. The results are shown in Fig. 5.10 together with a plot of the density of states.
Note that the magnitude of the density of states only enters through the coupling strengths
which are held constant.

The following interpretation is guided by the observations that a high density of states
is generally favorable for superconductivity and that not only its value at one exact energy
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Figure 5.10: Energy dependence. It is shown how the critical temperature, the self-consistent chemical
potential and the leading energy shift change with the chemical potential of the non-interacting system.
Again, the parameters are the same as in Fig. 5.4.

contributes, but rather floating averages with respect to bell-shaped weight functions which are
centered at µ − χ(iωn), which can be directly deduced from Eq. 4.7.

Although χ(iωn) is partially compensated by the change of the chemical potential µ0 − µ
[34, p. 80], as can be seen in the central panel of Fig. 5.10, it still determines the direction of
the effective energy shift. More precisely, only for small Matsubara frequencies χ(iωn) exceeds
the constant µ0− µ in magnitude, but these are the ones with the dominant contribution. Hence,
the focus is on χ(iωn), which always shifts the center of the floating average towards a higher
density of states.

Very close to the van Hove singularity and the band edges the critical temperature is lower
than expected because the density of states entering the coupling constant does not represent
the average density of states in the vicinity, which is less. At the singularity itself the matrix
elements of the electron-phonon and Coulomb interaction must vanish in order to justify the
definition of finite coupling constants. If a critical temperature shall be ascribed to this case at
all, it must be zero.

In between these extremes the situation is different: Approaching the van Hove singularity
from one of the sides, the center of the floating average is continuously shifted towards more
favorable energies, albeit with decreasing magnitude, hence the slow decrease of the critical
temperature. However, in the proximity of the van Hove singularity the steep slope of the
density of states overcompensates this effect, which leads to a boost of the critical temperature
shortly before it drops towards zero.

To conclude, the shape of the density of states may affect the critical temperature considerably,
especially where changes with energy are strong, e.g. at van Hove singularities. This is a
problem inherent in the definition of the coupling strengths, which should give a reliable measure
of the real coupling. A possible solution is to use intensive coupling strengths which are defined
with respect to wave functions rather than the density of states [54].



Chapter 6

Multi-band results

In the previous chapter it has been confirmed that McMillan’s equation can very well be used to
predict critical temperatures of local Eliashberg theory if only one electronic band is considered.
The question remains, whether it may also be applied if the coupling strengths are matrices
rather than scalars, which is equivalent to the problem of finding single-band systems which
resemble multi-band systems with respect to the critical temperature – self-energies etc. will
certainly differ. Having three degrees of freedom at hand, namely the phonon frequency ωE,
the electron-phonon coupling λ and the Coulomb pseudo-potential µ∗, there are of course
innumerable possibilities to accomplish this. However, since an unphysical redistribution of
influences shall be avoided, the further shall not be modified and, if the latter vanishes, one is
left with determining a single parameter λ without ambiguities. This is what the present chapter
is dedicated to, for the special case of a two-band system and within the CDOS approximation.

To begin with, the temperature dependence of the order parameters of the different bands is
investigated in analogy to Section 5.2.1. Next, it presented how intra- and inter-band coupling
strengths can be varied independently without altering the critical temperature. Based on
this, the approximate mappings onto scalar coupling constants proposed in Section 4.9.2 are
visualized using the example of inter-band coupling alone. Finally, the same approximations
are tested with respect to the critical temperature itself.

6.1 Temperature dependence of order parameters

In the multi-band formalism a different self-energy, and thus a different energy gap, may be
associated with each band. In Fig. 6.1 the two gaps of the considered two-band systems are
shown as functions of temperature, i.e. in their role as order parameters, for different strengths
of the inter-band coupling. The latter is chosen equally spaced on a logarithmic scale, which
leads to a higher resolution on the side of small couplings. In the upper panel both inter-band
coupling strengths are varied simultaneously, in the lower panels either of them is zero in order
to point out its specific influence. Actually the latter situations are unphysical, since they may
only be realized if either of the band densities of states, which also enter the diagonal coupling
strengths, is zero or infinite (see Section 4.8). The diagonal elements, however, are chosen to
be finite constants which differ by a factor of two.

In the case of intra-band coupling alone, which is not displayed in Fig. 6.1, one finds two
curves which exactly resemble those for the single-band systems corresponding to the separate
bands – because that is what they are. Each band has its own critical temperature; the upper
one is associated with the system as a whole. Also, the number of iterations needed to reach
convergence is found to be enhanced at both critical temperatures.

As soon as the influence of the band with the higher critical temperature on the other band
is switched on – it is important to note that this coupling is not bidirectional –, the end of
the lower curve is extended towards the end of the upper one resulting in a common critical
temperature,1 which retains the exact value determined by the greater intra-band coupling

1Within the BCS theory, a similar behavior has been observed by Suhl, Matthias and Walker [55, Fig. 2].
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Figure 6.1: Incrementally switching on inter-band coupling. In analogy to Fig. 11 of Ref. 47, the
temperature dependence of the leading Matsubara gaps of a two-band system with a phonon frequency
ωE = 20 meV and no explicit Coulomb interaction is shown for different electron-phonon coupling matrices

λtop =

[
1 x

x 2

]
, λleft =

[
1 0
x 2

]
and λright =

[
1 x

0 2

]
.

The density of states is assumed to be constant and the cutoff frequency chosen to be ωN = 15ωE.

strength (right panel). For this to happen, the strength of the switched-on coupling is irrelevant
and only influences the magnitude along the newly formed tail.

In the case of a reversed influence, the upper critical temperature approaches the lower one,
which in turn remains constant (left panel). At the same time, the lower curve becomes apparent
in the shape of the upper curve at corresponding temperatures, resulting in a sharp bend at the
lower critical temperature.

When both effects are combined, i.e. when the inter-band couplings are switched on
simultaneously, there is a common critical temperature which depends on the common coupling
strength (upper panel). At all other non-zero temperatures both curves are differentiable because
the lower curve is softened by the way it reaches for the end of the upper curve, the shape of
which it still has influence on.

Notably, the critical temperature is not always enhanced if an element of the electron-phonon
coupling matrix increases. The possibility of an inhibiting influence is disregarded when taking
the maximum eigenvalue of the coupling matrix as an effective scalar coupling strength, as
described in Section 4.9.2, since it increases monotonically as a function of any element, just
like the resulting critical temperature.
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6.2 Critical isotherms

The influence of the individual elements of the electron-phonon coupling matrix on the critical
temperature requires a more detailed analysis. Making a start, this section is dedicated to the
search for different coupling matrices which yield the same critical temperature, i.e. for ‘critical
isotherms’ in the space of the matrix elements.

6.2.1 Hyperbolas of constant Tc

To divide the problem into manageable parts the following question is proposed: How must
either the intra- or the inter-band coupling strengths change simultaneously, with the respective
other pair of elements held constant, so that the corresponding critical temperature is conserved?

The outcome for some representative parameter sets is displayed in Fig. 6.2. The numerical
results, illustrated as scatter plots, immediately suggest the following dependency: The matching
intra- and inter-band coupling strengths lie on convex and concave sections of hyperbolas,
respectively. This assumption is confirmed by comparison with a guess for the analytic
dependence, which will be developed subsequently.

Let x represent the variable and y the dependent element of the electron-phonon coupling
matrix. The most simple equation defining a hyperbola through x = y = λ reads

y =
λ2

x
.

However, the asymptotes would coincide with the x- and y-axes which is definitely not always
the case in Fig. 6.2. The hyperbola is thus compressed by the factors α and β in x- and
y-direction, respectively, with x = y = λ defining the fixed point. This yields

y =

λ2

α(x−λ)+λ − λ
β

+ λ =
1

β

λ2 − λ[α(x − λ) + λ]

α(x − λ) + λ
+ λ = λ− α

β

λ(x − λ)
α(x − λ) + λ

= λ− α

β

λ

α + λ
x−λ

.

The new asymptotes are at x = x∞ = λ(1− α−1) and y = y∞ = λ(1− β−1). Thus

y = λ− λ− y∞
λ− x∞

λ
λ

λ−x∞ + λ
x−λ

= λ− λ− y∞
x − x∞

(x − λ).

This formula describes the desired relation between the intra-band coupling strengths for x∞
and y∞ greater than or equal to λ. In contrast, x∞ and y∞ less than or equal to λ are required
for the description of the inter-band coupling. The asymptotes may also be expressed in terms
of the x- and y-intercepts x0 and y0:

x0 = λ
[
1− λ− x∞

y∞

]
, x∞ =

λ2x0

λ(x0 + y0)− x0y0
,

y0 = λ
[
1− λ− y∞

x∞

]
, y∞ =

λ2y0

λ(x0 + y0)− x0y0
.

For each parameter set the asymptotes are determined numerically. For the inter-band coupling,
x∞ and y∞ are calculated directly by assigning a very large value, 1010 say, to either λ12 or
λ21 and solving for the other element. In the intra-band case the asymptotes are excluded from
the domain of possible values. Hence, the intercepts are calculated with either λ11 or λ22 zero.
The position of the asymptotes is then concluded by means of the above equations.

The determined hyperbolas are plotted together with the numerical data points, which
reveals a very good agreement. The choice of the correct asymptotes depends not only on λ but
also on the two matrix elements which are held constant. If an analytic expression of these
dependencies were known, a closed set of equations would be obtained which could be solved
for the scalar equivalent of the whole coupling matrix. This task is not accomplished within
the present work, but in the following section some predictions of the proposed approximate
mappings regarding this matter are presented.
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Figure 6.2: Hyperbolas of constant Tc. For the parameters ωE = 20 meV, ωN = 25ωE and µ∗ = 0,
hyperbolas are shown, along which either intra- or inter-band electron-phonon coupling strengths in a
two-band system may be jointly varied without changing the critical temperature. They intersect the
bisector of the quadrant at λd. = λ11 = λ22 and λod. = λ12 = λ21, respectively. It shall be noted that the
matrix λ = λd.σ 0 + λod.σ 1 and the scalar λ = λd. + λod. yield the same critical temperature.
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Figure 6.3: Position of the asymptotes λ∞ of the hyperbolas of constant Tc for inter-band coupling only,
i.e. λ11 = λ22 = 0, as a function of the coupling strengh λ. Not only exact results of the CDOS Eliashberg

theory but also the behavior within the approximations of a cutoff-independent mapping onto effective
scalar coupling constants (Section 4.9.2) and a renormalization of unity (Section 4.9.2) are presented.
Phonon and cutoff frequency are chosen to be ωE = 20 meV and ωN = 15ωE, respectively.

6.2.2 Asymptotes for inter-band coupling

In this section the approximate mappings onto effective scalar coupling strengths which were
introduced in Section 4.9.2 are visualized for the special case of inter-band coupling alone,
i.e. λ11 = λ22 = 0. Because of the symmetry implied herein, λ12 as a function of λ21 is an
involution, i.e. its own inverse. Subsequently, both asymptotes have the same distance to their
corresponding axes.

The latter is determined both numerically and analytically according to Eqs. 4.9.2 and 4.9.2.
In the case studied, the latter reduce to the hyperbola equations

λ =
√
λ12λ21 and λ = −1

2

[
λ12 + λ21 +

√
(λ12 + λ21)2 + 12λ12λ21

]
.

Solving for λ21 and taking the limit λ12 →∞ yields the respective asymptotes:

λ21 =
λ2

λ12
→ 0 and λ21 =

λ+ λ12

3λ12 − λ
λ→ λ

3
.

The results are presented in Fig. 6.3. For all values of λ, the approximation of a cutoff-
independent mapping yields better results than the assumption of a renormalization of unity.
Especially for λ ≈ 1, the agreement is satisfactory; for larger λ it worsens continuously.

6.3 Effective scalar coupling strengths

Finally, the two mappings shall also be tested with respect to the critical temperatures they
predict. To that end a sample of 500 electron-phonon coupling matrices is generated, the
elements of which are random samples from a uniform distribution over [0, 1), preselected
by the criterion that their maximum eigenvalue is not less then 1

2 in order to circumvent
very low temperatures which are accompanied by a high computational workload caused by
considering many Matsubara frequencies. For each matrix and their corresponding scalar
couplings strengths, critical temperatures are calculated and plotted against each other. The
resulting scatter plots are given in Fig. 6.4. It shall be noted that, on average, random coupling
matrices may not represent those describing real materials very well.
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Figure 6.4: Visualization of the quality of the introduced approximate mappings onto effective scalar
coupling strengths. For a random sample of electron-phonon coupling matrices and their corresponding
scalar couplings strengths, critical temperatures are calculated and plotted against each other. The
temperatures corresponding to integer scalar coupling strengths are marked for a better orientation. The
continuous line is the quadrant bisector. Again, ωE = 20 meV and ωN = 15ωE.

The approximation of a cutoff-independent mapping turns out to be considerably more
accurate than the assumption of a renormalization of unity, in accordance with the results of
the previous section. Again, the former approach yields best results for coupling strengths
in the vicinity of unity. Below and above it tends to under- and overestimate the critical
temperature. The average absolute error is found to be 0.3 K. Also, the statement made at
the end of Section 6.1 is confirmed: Neglecting the renormalization does never lead to an
underestimate of the critical temperature – on the contrary in most of the cases. Here, the
average absolute error is 2.2 K.



Chapter 7

Conclusion

Principally, the results of the present work are consistent with the critical temperatures obtained
from McMillan’s formula. In the only case where a direct comparison is possible, i.e. for scalar
coupling strengths and within the CDOS approximation, the agreement is satisfactory except
for large electron-phonon coupling strengths, a limitation which is well-known though. To some
degree, the conformity may even be enhanced by adjusting the fit parameters to the considered
phonon spectrum. Beyond this, there no one-to-one correspondence between either the Coulomb
pseudo-potentials entering McMillan’s formula and the Eliashberg equations considering a
real density of states or the coupling matrices and effective scalars in the multi-band case.

Regarding the Coulomb pseudo-potential, several observations have been made: First, the
CODS Eliashberg equations require a cutoff of the Matsubara sums. If the original strength
of the Coulomb interaction is used without any rescaling, the critical temperature does not
converge with an increasing cutoff as it would be the case without the CDOS approximation.
Instead, it is known that the correct results are obtained at a cutoff frequency similar to the
electronic bandwidth. There is, however, a fairly well justified relation between the parameter
for McMillan’s equation and the rescaled one to be used at a certain cutoff. Unfortunately this
fails for real densities of states, where a heuristic mapping has to be applied. As derived and
tested in this work, the actual rescaling may subsequently be performed in consideration of the
specific density of states, which yields an improved the rate of convergence.

The Coulomb interaction apart, the predictions of McMillan’s formula are also quite accurate
beyond the CDOS approach, as long as the density of states near the chemical potential varies
slowly. Both at van Hove singularities and band edges is has been observed that the effective
contribution of the density of states is less than the one with respect to which the coupling
strengths are defined, which leads to overestimated critical temperatures.

Taking multi-band interactions into account, testing the validity of McMillan’s formula is
equivalent to searching appropriate mappings from coupling matrices onto effective scalars
which yield the same critical temperature. Hereof, no exact solution may be reported but two
approximations which yield acceptable results. One of them neglects the energy renormalization
and tends to overestimate the coupling strength, the other has been derived at the lowest cutoff
frequency possible but astonishingly maintains most of its accuracy up to reasonable cutoffs.

Furthermore, for a two-band system it has been found that either the diagonal or off-diagonal
elements of the electron-phonon coupling matrix may be varied along specific hyperbolas without
altering the corresponding critical temperature. An exact mapping would have been found if the
position of the asymptotes as a function of the other matrix elements were known. This has
not been accomplished and is thus a possible object of further research. The two approximate
mappings only give some qualitative results on that score.

Besides questions concerning the critical temperature, the thesis endeavors to give a
useful overview of the Eliashberg theory of superconductivity, including its derivation from the
fundamental interactions as well as discussions of the variety of special cases and approximations
such as the CDOS approach. Moreover, software has been developed which is yet to be applied
in a more physical context such as the description of realistic materials.
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Appendix A

Fourier analysis

Whenever there is translational symmetry, no matter if with respect to space or time, it is
instructive to explore the space of the corresponding conserved quantity, momentum or energy.
This applies especially to solid state physics, where one often has spatial periodicity in addition
to conservation of energy.

The mathematical tools to switch between such related representations are given by the
Fourier analysis. Despite its prominence, the different transformations for the possible com-
binations of discrete and continuous domains shall be briefly presented, together with the
underlying orthogonality relations.

A.1 Discrete Fourier transform

The discrete Fourier transform and its inverse read

ŷν =
1√
N

n0+N−1∑

n=n0

e2πinν/Nyn = ŷν+N ,

yn =
1√
N

ν0+N−1∑

ν=ν0

e−2πinν/N ŷν = yn+N ,

where ŷν and yn ∈ C are defined for all ν and n ∈ Z and recur with period N ∈ N+ making
the lower bounds ν0 and n0 ∈ Z arbitrary. Invertibility is ensured by the orthogonality relation

n0+N−1∑

n=n0

e2πinν/N = N
∑

n∈Z
δnNν , (A.1)

which is proved recognizing the partial sum of a geometrical series:

N−1∑

n=0

e2πinν/N =

{∑N−1
n=0 1 = N for ν

N
∈ Z,

e2πiν−1
e2πinν/N−1

= 0 otherwise.

A.2 Fourier series

The Fourier series and its coefficients read

y(t) =
∑

n∈Z
e2πint/Tyn = y(t + T ),

yn =
1

T

∫
dt e−2πint/Ty(t),

53



54 FOURIER TRANSFORM A.3

where y(t) ∈ C is defined for all t ∈ R and periodic with period T ∈ R+ making the lower limit
t0 ∈ R arbitrary and yn ∈ C is defined for all n ∈ Z. There are two orthogonality relations,

∫ t0+T

t0

dt e2πintT = Tδ0
n, (A.2a)

∑

n∈Z
e2πint/T = T

∑

n∈Z
δ(t − nT ). (A.2b)

The second equation is just mentioned for completeness since the left-hand side is the Fourier
series of the right-hand side. The first equation is proved by simply carrying out the integral:

∫ T

0

dt e2πint/T =

{∫ T

0 dt = T for n = 0,
e2πint/T

2πin/T

∣∣T
t=0

= 0 otherwise.

A.3 Fourier transform

The Fourier transform and its inverse read

ŷ(f ) =

∫ ∞

−∞
dt e2πifty(t),

y(t) =

∫ ∞

−∞
df e−2πiftŷ(f ),

where ŷ(f ) and y(t) ∈ C are defined for all f and t ∈ R. The orthogonality relation is

∫ ∞

−∞
dt e2πift = δ(f ).

With ω = 2πf and η ∈ R introduced to generate convergence it is proved in three steps:

∫ ∞

0

dt eiωt = lim
η→0

∫ ∞

0

dt eiωte−ηt = lim
η→0

eiωte−ηt

iω − η
∣∣∣
∞

ω=0
= lim

η→0

1

η − iω
,=

i

ω + i0+
, (A.3a)

∫ 0

−∞
dt eiωt = lim

η→0

∫ 0

−∞
dt eiωteηt = lim

η→0

eiωteηt

iω − η
∣∣∣
0

ω=−∞
= lim

η→0

1

η + iω
=

−i

ω − i0+
, (A.3b)

∫ ∞

−∞
dt eiωt = lim

η→0

[
1

η − iω
+

1

η + iω

]
= lim

η→0

2η

η2 + ω2
= 2πδ(ω). (A.3c)



Appendix B

Source code

On the following pages the complete source code of the Eliashberg solvers developed as part
of this thesis is exposed. This may be considered out of place in a written work as the present
one, but for the sake of completeness and a verifiability of the presented results it is done
nonetheless.

The software consists of three programs, all written in conformance with a recent standard
of the programming language Fortran, which serve different purposes: ebmb provides electronic
self-energies on both the real and imaginary frequency axis, critical determines critical
parameter sets by varying a parameter of choice while holding the others constant and tc may
be used to find critical temperatures for all electronic bands separately.

The programs may be run via the command line, where all parameters are given as arguments
(except for densities of states which must be provided in text files) and the results are either
formatted and prompted to standard output or written to disk using their internal representation,
the latter being lossless but also platform-dependent. Alternatively, an interface for the popular
high-level language Python may be used, which is presented first.

B.1 Python interface

The following Python module provides wrapper functions for the different Eliashberg solvers.
Parameters are directly passed to the calling functions and the results returned as (dictionaries
of) NumPy arrays. In addition, there are two functions to generate electronic densities of states,
either from an analytic expression in the special case of a square tight-binding lattice or by
sampling an arbitrary dispersion relation, the domain of which may be divided into different
subdomains in order to obtain separate densities of states for each of them.

1 #!/usr/bin/env python

2

3 """Wrapper and auxiliary functions for Eliashberg solver ebmb"""

4

5 import itertools

6 import numpy as np

7 from os import path

8 import subprocess

9

10 try:

11 from scipy.special import ellipk

12 except ImportError:

13 print 'square_dos not available '

14

15 def get(program='ebmb', file='~temporary.dat', replace=True , ** parameters ):

16 """Run 'ebmb ', 'tc' or 'critical ' and load results.

17

18 Parameters

55
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19 ----------

20 program : str

21 Name of or path to executable.

22 file : str

23 Path to output file.

24 replace : bool

25 Overwrite existing output file?

26 ** parameters

27 Program parameters.

28

29 Returns

30 -------

31 dict

32 Returned if `program` corresponds to 'ebmb '.

33 Self -energy components etc.

34 ndarray

35 Returned otherwise.

36 Critical parameter(s).

37 """

38 if replace or not path.exists(file):

39 run(program , file=file , ** parameters)

40

41 if program.endswith('ebmb'):

42 return load(file)

43 else:

44 return load_floats(file)

45

46 def run(program='ebmb', ** parameters ):

47 """Run 'ebmb ', 'tc' or 'critical '.

48

49 Parameters

50 ----------

51 program : str

52 Name of or path to executable.

53 ** parameters

54 Program parameters.

55 """

56 command = [program]

57

58 for key , value in parameters.items ():

59 command.append('='.join([key , ','.join(map(str , np.ravel(value )))]))

60

61 subprocess.call(command)

62

63 def load(file):

64 """Load output file of 'ebmb '.

65

66 Parameters

67 ----------

68 file : str

69 Path to output file.

70

71 Returns

72 -------

73 dict

74 Self -energy components etc.

75 """

76 data = {}

77

78 with open(file , 'rb') as file:

79 while True:
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80 name = ''.join(iter(lambda: file.read (1) or ':', ':'))

81

82 if name == 'REAL':

83 dtype = np.float64

84

85 elif name == 'INT':

86 dtype = np.int32

87

88 elif name == 'DIM':

89 shape = np.fromfile(file , np.int32 ,

90 *np.fromfile(file , np.int32 , 1))

91

92 elif name:

93 data[name] = np.fromfile(file , dtype ,

94 shape.prod ()). reshape(shape)

95 else:

96 return data

97

98 def load_floats(file):

99 """Load output file of 'tc' or 'critical '.

100

101 Parameters

102 ----------

103 file : str

104 Path to output file.

105

106 Returns

107 -------

108 ndarray

109 Critical parameter(s).

110 """

111 with open(file , 'rb') as file:

112 data = np.fromfile(file , np.float64)

113

114 return data if data.size > 1 else data [0]

115

116 def dos(file , epsilon , domain , filters =[], resolution =101, replace=True):

117 """Calculate subdomain -resolved density of states and save it to file.

118

119 Parameters

120 ----------

121 file : str

122 Path to output file.

123 epsilon : function

124 Band structure.

125 domain : list of ndarray

126 Discretized domains of arguments of `epsilon `.

127 filters : list of function

128 N filters defining N + 1 subdomains.

129 resolution : int

130 Resolution of density of states.

131 replace : bool

132 Overwrite existing output file?

133

134 Returns

135 -------

136 ndarray

137 Energy.

138 ndarray

139 Subdomain -resolved density of states.

140 """
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141 if not replace and path.exists(file):

142 return

143

144 points = np.prod(map(len , domain ))

145

146 energy = np.empty(points)

147 pocket = np.empty(points , dtype=int)

148

149 for i, x in enumerate(itertools.product (* domain )):

150 energy[i] = epsilon (*x)

151 pocket[i] = 0

152

153 for element in filters:

154 if element (*x): break

155 pocket[i] += 1

156

157 emin = energy.min()

158 emax = energy.max()

159

160 binned = (( resolution - 1)

161 * (energy - emin) / (emax - emin )). round (). astype(int)

162

163 pockets = len(filters) + 1

164

165 count = np.zeros((resolution , pockets), dtype=int)

166

167 for i in range(points ):

168 count[binned[i], pocket[i]] += 1

169

170 e, de = np.linspace(emin , emax , resolution , retstep=True)

171

172 dos = count / (de * count.sum ())

173 dos[(0, -1), :] *= 2

174

175 with open(file , 'w') as out:

176 for i in range(resolution ):

177 out.write('% .10f' % e[i])

178

179 for j in range(pockets ):

180 out.write(' %.10f' % dos[i, j])

181

182 out.write('\n')

183

184 return e, dos if pockets > 1 else dos[:, 0]

185

186 def square_dos(file='dos.in', resolution =401, t=0.25, replace=True):

187 """Calculate density of states of square lattice and save it to file.

188

189 Parameters

190 ----------

191 file : str

192 Path to output file.

193 resolution : int

194 Resolution of density of states.

195 t : float

196 Hopping parameter.

197 replace : bool

198 Overwrite existing output file?

199

200 Returns

201 -------
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202 ndarray

203 Energy.

204 ndarray

205 Density of states.

206 """

207 if not replace and path.exists(file):

208 return

209

210 e, de = np.linspace(-4 * t, 4 * t, resolution , retstep=True)

211

212 mid = resolution // 2

213

214 dos = np.empty(resolution)

215

216 dos[:mid] = ellipk (1 - (e[:mid] / (4 * t)) ** 2) / (2 * np.pi ** 2 * t)

217 dos[-mid:] = dos[mid - 1::-1]

218

219 if resolution % 2:

220 dos[mid] = 0.0

221 dos[mid] = 1 / de - dos [0] / 2 - sum(dos [1: -1]) - dos[-1] / 2

222

223 with open(file , 'w') as out:

224 for i in range(resolution ):

225 out.write('% .10f %.10f\n' % (e[i], dos[i]))

226

227 return e, dos

228

229 if __name__ == '__main__ ':

230 np.set_printoptions(threshold =9, edgeitems =1)

231

232 square_dos('dos.in')

233

234 for item in sorted(get(dos='dos.in', n=0.5, tell=False ).items ()):

235 print ('%9s = %s' % item). replace('\n', '\n' + ' ' * 12)

B.2 Universal modules

This section combines Fortran modules which are either used globally, i.e. in nearly all
subsequent subroutines, or applicable universally, i.e. not only in the context of solving the
Eliashberg equations.

B.2.1 global.f90

The following module provides information which must be globally accessible. This includes the
desired accuracy of floating-point numbers, mathematical and physical constants as well as
container data types which are used to pass around parameters and results without the need for
endless argument lists at functions calls or, more troublesome, global variables. Additionally, a
operator is defined which compares floating point numbers for approximate equality. It decides,
for example, whether numerical self-consistency has been reached or an iteration has to continue.
In all calculations performed, the default negligible float difference 10−15 has been chosen.

1 module global

2 implicit none

3

4 integer , parameter :: dp = selected_real_kind (15) ! double precision (8 B)

5 integer , parameter :: qp = selected_real_kind (30) ! quad precision (16 B)

6 integer , parameter :: i4 = selected_int_kind (9) ! signed integer (4 B)

7
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8 real(dp), parameter :: pi = 4 * atan (1.0 _dp) ! 3.14159...

9 real(dp), parameter :: kB = 8.61733e-5_dp ! Boltzmann constant (meV/K)

10

11 integer , parameter :: unit = 11 ! file unit number

12

13 type parameters

14 character (99) :: file = 'none' ! name of output file

15 character (50) :: form = 'F16.12' ! number format

16

17 logical :: tell = .true. ! use standard output?

18

19 real(dp) :: T = 10.0 _dp ! temperature (K)

20

21 real(dp) :: omegaE = 0.02 _dp ! Einstein frequency (eV)

22 real(dp) :: cutoff = 15.0 _dp ! overall cutoff frequency (omegaE)

23 real(dp) :: cutoffC = -1.0_dp ! Coulomb cutoff frequency (omegaE)

24

25 integer(i4) :: bands = 1 ! number of electronic bands

26

27 real(dp), allocatable :: lambda(:, :) ! electron -phonon coupling

28 real(dp), allocatable :: muStar(:, :) ! Coulomb pseudo -potential

29

30 real(dp), allocatable :: energy (:) ! free -electron energy (eV)

31 real(dp), allocatable :: dos(:, :) ! density of Bloch states (a.u.)

32

33 real(dp) :: n = 0.0_dp ! initial occupancy number

34 real(dp) :: mu = 0.0_dp ! initial chemical potential (eV)

35

36 logical :: conserve = .true. ! conserve particle number?

37

38 logical :: chi = .false. ! find energy shift?

39

40 integer(i4) :: limit = 250000 ! maximum number of iterations

41

42 real(dp) :: error = 1e-05_dp ! bisection error (a.u.)

43 real(dp) :: zero = 1e-10_dp ! negligible gap at critical temperature (eV)

44 real(dp) :: rate = 1e-01_dp ! growth rate for bound search

45

46 real(dp) :: clip = 15.0 _dp ! maximum real -axis frequency (omegaE)

47

48 integer(i4) :: resolution = 0 ! real -axis resolution

49 logical :: measurable = .false. ! find measurable gap?

50

51 logical :: rescale = .true. ! rescale Coulomb pseudo -potential?

52 logical :: imitate = .false. ! cut off renormalization function?

53

54 logical :: normal = .false. ! enforce normal state?

55

56 logical :: power = .true. ! use power method for single band?

57 end type parameters

58

59 type matsubara

60 real(dp), allocatable :: omega (:) ! frequency (eV)

61 real(dp), allocatable :: Z (:, :) ! renormalization

62 real(dp), allocatable :: chi (:, :) ! energy shift (eV)

63 real(dp), allocatable :: Delta(:, :) ! gap (eV)

64 real(dp), allocatable :: phi (:, :) ! order parameter (eV)

65 real(dp), allocatable :: phiC (:) ! constant Coulomb contribution (eV)

66

67 integer(i4) :: status ! convergence status

68 end type matsubara
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69

70 type continued

71 real (dp), allocatable :: omega (:) ! frequency (eV)

72 complex(dp), allocatable :: Z (:, :) ! renormalization

73 complex(dp), allocatable :: chi (:, :) ! energy shift (eV)

74 complex(dp), allocatable :: Delta (:, :) ! gap (eV)

75 real (dp), allocatable :: Delta0 (:) ! measurable gap (eV)

76

77 integer(i4), allocatable :: status (:) ! convergence status

78 end type continued

79

80 type occupancy

81 real(dp) :: n0, n ! initial and final occupancy number

82 real(dp) :: mu0 , mu ! initial and final chemical potential (eV)

83 end type occupancy

84

85 real(dp) :: epsilon = 1e-15_dp ! negligible float difference (a.u.)

86

87 interface operator (.ap.)

88 module procedure ap

89 end interface

90

91 contains

92

93 elemental function ap(lhs , rhs)

94 logical :: ap

95 real(dp), intent(in) :: lhs , rhs

96

97 ap = abs(lhs - rhs) .le. epsilon

98 end function ap

99 end module global

B.2.2 eigenvalues.f90

When testing for superconductivity via the linearized Eliashberg equations, the quantity of
interest is the greatest eigenvalue of the kernel given e.g. in Eq. 4.27, which is a non-symmetric
matrix with real eigenvalues. It is determined either using the corresponding routine from the
well-established linear-algebra package LAPACK [56] or via the power method. The latter has
the advantage that an eigenvalue of a prior calculation can be used as an initial guess if the
parameter set has only changed slightly. However, it requires that the eigenvalue searched
for notably exceeds the rest of the spectrum in magnitude. If an interfering eigenvalue is of
opposite sign, the situation is still unproblematic since the spectrum can be shifted by adding
or subtracting a lower or upper bound to the diagonal of the matrix, respectively.1 Otherwise,
the iteration will oscillate rather than converge and the method must be abandoned.

1 module eigenvalues

2 use global

3 use tools , only: bound

4 implicit none

5 private

6

7 public :: spectrum , power_method

8

9 interface

10 subroutine dgeev(jobvl , jobvr , n, a, lda , wr, wi, vl, ldvl , vr, ldvr , &

11 work , lwork , info)

12

1A suitable eigenvalue bound is given by a function presented in the next section.
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13 use global

14

15 character , intent(in) :: jobvl , jobvr

16

17 integer , intent(in) :: n, lda , ldvl , ldvr , lwork

18 integer , intent(out) :: info

19

20 real(dp), intent(inout) :: a(lda , *)

21 real(dp), intent(out) :: wr(*), wi(*), vl(lda , *), vr(lda , *), work (*)

22 end subroutine dgeev

23 end interface

24

25 contains

26

27 function spectrum(matrix , error)

28 real(dp), intent(in) :: matrix(:, :)

29 integer , intent(out), optional :: error

30

31 complex(dp) :: spectrum(size(matrix , 1))

32

33 integer :: n, info

34

35 real(dp) :: a(size(matrix , 1), size(matrix , 2))

36 real(dp) :: wr(size(matrix , 1)), wi(size(matrix , 1))

37 real(dp) :: v(1, 1), work(3 * size(matrix , 1))

38

39 a(:, :) = matrix

40

41 n = size(matrix , 1)

42

43 call dgeev( &

44 & jobvl = 'N', &

45 & jobvr = 'N', &

46 & n = n, &

47 & a = a(1, 1), &

48 & lda = n, &

49 & wr = wr(1), &

50 & wi = wi(1), &

51 & vl = v(1, 1), &

52 & ldvl = n, &

53 & vr = v(1, 1), &

54 & ldvr = n, &

55 & work = work(1), &

56 & lwork = 3 * n, &

57 & info = info )

58

59 spectrum = cmplx(wr , wi , dp)

60

61 if (present(error )) error = info

62 end function spectrum

63

64 subroutine power_method(matrix , vector , value)

65 real(dp), intent(inout) :: matrix(:, :), vector (:)

66 real(dp), intent(out) :: value

67

68 real(dp) :: shift , value0

69

70 integer :: i

71

72 shift = bound(matrix)

73
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74 do i = 1, size(matrix , 1)

75 matrix(i, i) = matrix(i, i) + shift

76 end do

77

78 value0 = -1

79

80 do

81 vector (:) = matmul(matrix , vector)

82

83 value = sqrt(sum(vector ** 2))

84 vector (:) = vector / value

85

86 if (value .ap. value0) exit

87

88 value0 = value

89 end do

90

91 value = value - shift

92 end subroutine power_method

93 end module eigenvalues

B.2.3 tools.f90

In the following, five succinct functions or subroutines are presented which each serve a very
specific purpose and may be used in a variety of occasions.

• argument(n) returns the value of the n-th command-line argument as a string of the
corresponding length.

• bound(matrix) returns a bound for the magnitude of the eigenvalues of the given matrix

in terms of the minimum of the maximum row and column sums [57, Eqs. 1.1, 1.2].

• differential(x, dx) calculates a list of weights or ‘differentials’ dx from a list of sample
points x to be used for numerical integration with the trapezoidal rule.

• interval(x, a, b, lower, upper) discretizes the interval from a to b (returned as x),
where lower and upper decide which bounds are to be included.

• matches(str, char) counts the occurrences of a character in a string.

1 module tools

2 use global

3 implicit none

4

5 private

6 public :: argument , bound , differential , interval , matches

7

8 contains

9

10 function argument(n)

11 character (:), allocatable :: argument

12 integer , intent(in) :: n

13

14 integer :: size

15

16 call get_command_argument(n, length=size)

17

18 allocate(character(size) :: argument)

19

20 call get_command_argument(n, value=argument)
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21 end function argument

22

23 real(dp) function bound(matrix)

24 real(dp), intent(in) :: matrix(:, :)

25

26 real(dp) :: R, C, S

27

28 integer :: i

29

30 R = 0

31 do i = 1, size(matrix , 1)

32 S = sum(abs(matrix(i, :)))

33 if (S .gt. R) R = S

34 end do

35

36 C = 0

37 do i = 1, size(matrix , 2)

38 S = sum(abs(matrix(:, i)))

39 if (S .gt. C) C = S

40 end do

41

42 bound = min(R, C)

43 end function bound

44

45 subroutine differential(x, dx)

46 real(dp), intent(in) :: x(:)

47 real(dp), intent(out) :: dx(:)

48

49 integer :: n

50 n = size(x)

51

52 dx(1) = x(2) - x(1)

53 dx(2:n - 1) = x(3:n) - x(1:n - 2)

54 dx(n) = x(n) - x(n - 1)

55

56 dx(:) = dx / 2

57 end subroutine differential

58

59 subroutine interval(x, a, b, lower , upper)

60 real(dp), intent(out) :: x(:)

61 real(dp), intent(in) :: a, b

62 logical , intent(in), optional :: lower , upper

63

64 integer :: i, j, k

65

66 i = size(x)

67 j = 1

68

69 if (present(lower )) then

70 if (lower) j = j - 1

71 end if

72

73 if (present(upper )) then

74 if (upper) i = i - 1

75 end if

76

77 do k = 1, size(x)

78 x(k) = i * a + j * b

79 i = i - 1

80 j = j + 1

81 end do
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82

83 x = x / (i + j)

84 end subroutine interval

85

86 integer function matches(str , char)

87 character (*), intent(in) :: str

88 character (1), intent(in) :: char

89

90 integer :: c

91

92 matches = 0

93

94 do c = 1, len(str)

95 if (str(c:c) .eq. char) matches = matches + 1

96 end do

97 end function matches

98 end module tools

B.2.4 formatting.f90

In Fortran, the formatting of floating point numbers is controlled via so-called edit descriptors.
Since the desired format shall be left to the user, such edit descriptors must be generated at
run time. The following module makes this issue a little more comfortable.

1 module formatting

2 use global

3 implicit none

4

5 private

6 public :: measure , edit , rule

7

8 integer :: width

9 character (:), allocatable :: w, x

10

11 contains

12

13 subroutine measure(form)

14 character (*), intent(in) :: form

15

16 character (100) :: test

17

18 x = trim(form)

19

20 write (test , "(" // x // ", '|')") pi

21 width = index(test , '|') - 1

22

23 write (test , '(I0)') width

24 w = trim(test)

25 end subroutine measure

26

27 function edit(descriptor)

28 character (:), allocatable :: edit

29 character (*), intent(in) :: descriptor

30

31 integer :: n

32

33 edit = descriptor

34

35 do
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36 n = scan(edit , 'wx')

37 if (n .eq. 0) return

38

39 select case (edit(n:n))

40 case ('w'); edit = edit(:n - 1) // w // edit(n + 1:)

41 case ('x'); edit = edit(:n - 1) // x // edit(n + 1:)

42 end select

43 end do

44 end function edit

45

46 function rule(n)

47 character (:), allocatable :: rule

48 integer , intent(in) :: n

49

50 rule = "('" // repeat('_', n * width) // " ')"

51 end function rule

52 end module formatting

B.3 Eliashberg solvers

In this section four modules are presented which constitute the physical core of the software,
namely the solvers for the multi-band Eliashberg equations. They are subdivided on the one
hand into solvers for the self-energy on the imaginary axis or for the maximum eigenvalue of
the kernel of the linearized equations and on the other hand according to whether the density
of states is taken into account or not.

B.3.1 self_energy.f90

This lengthy module calculates the self-energy taking the density of states into account, i.e.
solves Eqs. 4.23, in the course of which not only particle numbers or chemical potentials according
to Section 4.7 have to be calculated but also the rescaled Coulomb pseudo-potential defined in
Eq. 4.17. Repeatedly, energy integrals are performed numerically using the trapezoidal rule.
Since all necessary quantities are already present, the calculation of the kernel in Eq. 4.29 is
also performed at the end of the process.

1 module eliashberg_self_energy

2 use global

3 use tools , only: differential

4 implicit none

5

6 private

7 public :: self_energy , initialize

8

9 logical :: initial = .true.

10

11 real(dp) :: states

12 real(dp), allocatable :: weight(:, :), trapezia (:), matsum (:)

13

14 contains

15

16 subroutine self_energy(x, im , oc, kernel)

17 type(parameters), intent(in) :: x

18 type(matsubara), intent(out) :: im

19 type(occupancy), intent(out) :: oc

20

21 real(dp), allocatable , intent(out), optional :: kernel(:, :)

22

23 real(dp) :: nE, Z, phi , chi , mu, domega , A0, B0, residue
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24

25 real(dp), allocatable :: g(:, :, :), U(:, :, :)

26 real(dp), allocatable :: muStar(:, :), A(:, :), B(:, :)

27

28 real(dp), allocatable :: integral_Z (:, :)

29 real(dp), allocatable :: integral_phi (:, :)

30 real(dp), allocatable :: integral_chi (:, :)

31

32 integer :: step , i, j, n, m, p, q, no, nC, f

33 logical :: done

34

35 if (initial) call initialize(x)

36

37 if (0 .lt. x%n .and. x%n .lt. 2) then

38 oc%n = x%n

39

40 oc%mu &

41 = (x%energy (1) * (2 - oc%n) + x%energy(size(x%energy )) * oc%n) / 2

42

43 done = .false.

44

45 do while (.not. done)

46 where (x%energy .ap. oc%mu)

47 matsum = 1 / (2 * kB * x%T)

48 elsewhere

49 matsum = x%energy - oc%mu

50 matsum = tanh(matsum / (2 * kB * x%T)) / matsum

51 end where

52

53 A0 = 0

54 B0 = 0

55

56 do i = 1, x%bands

57 trapezia (:) = weight(:, i) * matsum

58

59 A0 = A0 + sum(trapezia)

60 B0 = B0 + sum(trapezia * x%energy)

61 end do

62

63 mu = (oc%n - 1 + B0) / A0

64

65 if (oc%mu .ap. mu) done = .true.

66

67 oc%mu = mu

68 end do

69 else

70 oc%mu = x%mu

71

72 oc%n = 1

73

74 matsum (:) = tanh((x%energy - x%mu) / (2 * kB * x%T))

75

76 do i = 1, x%bands

77 oc%n = oc%n - sum(weight(:, i) * matsum)

78 end do

79 end if

80

81 oc%n0 = oc%n

82 oc%mu0 = oc%mu

83

84 f = minloc(abs(x%energy - oc%mu), 1)
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85

86 domega = 2 * pi * kB * x%T

87

88 nE = x%omegaE / domega

89

90 no = ceiling(x%cutoff * nE - 0.5_dp)

91 nC = ceiling(x%cutoffC * nE - 0.5 _dp)

92

93 allocate(im%omega (0:no - 1))

94

95 do n = 0, no - 1

96 im%omega(n) = domega * (n + 0.5_dp)

97 end do

98

99 allocate(g(1 - no:2 * no - 1, x%bands , x%bands))

100

101 do n = 1 - no , 2 * no - 1

102 g(n, :, :) = x%lambda / (1 + (n / nE) ** 2)

103

104 do i = 1, x%bands

105 g(n, :, i) = g(n, :, i) * states / x%dos(f, :)

106 end do

107 end do

108

109 allocate(muStar(x%bands , x%bands))

110

111 muStar(:, :) = x%muStar / (1 + x%muStar &

112 * log(2 * x%omegaE / (x%energy(size(x%energy )) - x%energy (1))))

113

114 if (x%rescale) then

115 where (x%energy .ap. oc%mu)

116 matsum = 1 / (domega * (nC + 0.5_dp))

117 elsewhere

118 matsum = x%energy - oc%mu

119 matsum = atan(matsum / (domega * (nC + 0.5 _dp))) / matsum

120 end where

121

122 residue = 0

123

124 do i = 1, x%bands

125 residue = residue + sum(weight(:, i) / x%dos(f, i) * matsum)

126 end do

127

128 residue = residue * states / pi

129

130 muStar(:, :) = muStar / (1 + muStar * residue)

131 end if

132

133 allocate(U(0:no - 1, x%bands , x%bands))

134

135 do n = 0, nC - 1

136 U(n, :, :) = -2 * muStar

137

138 do i = 1, x%bands

139 U(n, :, i) = U(n, :, i) * states / x%dos(f, :)

140 end do

141 end do

142

143 U(nC:, :, :) = 0

144

145 allocate(im%Z(0:no - 1, x%bands ))
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146

147 im%Z(:, :) = 1

148

149 allocate(im%phi (0:no - 1, x%bands))

150

151 im%phi(:, :) = 0

152

153 if (.not. (x%normal .or. present(kernel ))) im%phi(0, :) = 1

154

155 allocate(im%chi (0:no - 1, x%bands))

156

157 im%chi(:, :) = 0

158

159 allocate(A(0:no - 1, x%bands))

160 allocate(B(0:no - 1, x%bands))

161

162 allocate(integral_Z (0:no - 1, x%bands))

163 allocate(integral_phi (0:no - 1, x%bands))

164 allocate(integral_chi (0:no - 1, x%bands))

165

166 do i = 1, x%bands

167 do n = 0, no - 1

168 call integrate(n, i)

169 end do

170 end do

171

172 im%status = -1

173

174 do step = 1, x%limit

175 done = .true.

176

177 do i = 1, x%bands

178 do n = 0, no - 1

179 Z = 0

180 phi = 0

181 chi = 0

182

183 do j = 1, x%bands

184 do m = 0, no - 1

185 Z = Z + integral_Z(m, j) &

186 * (g(n - m, j, i) - g(n + m + 1, j, i))

187

188 phi = phi + integral_phi(m, j) &

189 * (g(n - m, j, i) + g(n + m + 1, j, i) + U(m, j, i))

190

191 chi = chi - integral_chi(m, j) &

192 * (g(n - m, j, i) + g(n + m + 1, j, i))

193 end do

194 end do

195

196 Z = 1 + Z * kB * x%T / im%omega(n)

197 phi = phi * kB * x%T

198 chi = chi * kB * x%T

199

200 done = done &

201 .and. (im%Z (n, i) .ap. Z) &

202 .and. (im%phi(n, i) .ap. phi) &

203 .and. (im%chi(n, i) .ap. chi)

204

205 im%Z (n, i) = Z

206 im%phi(n, i) = phi
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207 im%chi(n, i) = chi

208

209 call integrate(n, i)

210 end do

211 end do

212

213 if (x%conserve) then

214 matsum (:) = atan((x%energy - oc%mu) / (domega * (no + 0.5 _dp))) &

215 / domega

216

217 residue = 0

218

219 do i = 1, x%bands

220 residue = residue + sum(weight(:, i) * matsum)

221 end do

222

223 mu = ((oc%n - 1) / (4 * kB * x%T) + sum(A * im%chi + B) + residue) &

224 / sum(A)

225

226 done = done .and. (oc%mu .ap. mu)

227

228 oc%mu = mu

229 end if

230

231 if (done) then

232 im%status = step

233 exit

234 end if

235 end do

236

237 allocate(im%Delta (0:no - 1, x%bands))

238

239 im%Delta(:, :) = im%phi / im%Z

240

241 allocate(im%phiC(x%bands ))

242

243 do i = 1, x%bands

244 im%phiC(i) = kB * x%T * sum(integral_phi * U(:, :, i))

245 end do

246

247 oc%n = 1 - 4 * kB * x%T * (sum(integral_chi) + residue)

248

249 if (present(kernel )) then

250 allocate(kernel(x%bands * no, x%bands * no))

251

252 do i = 1, x%bands

253 p = i * no

254 do j = 1, x%bands

255 q = j * no

256 do n = 0, no - 1

257 do m = 0, no - 1

258 kernel(q - m, p - n) = kB * x%T * A(m, j) &

259 * (g(n - m, j, i) + g(n + m + 1, j, i) + U(m, j, i))

260 end do

261 end do

262 end do

263 end do

264 end if

265

266 contains

267
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268 subroutine integrate(n, i)

269 integer , intent(in) :: n, i

270

271 trapezia (:) = weight(:, i) / ((im%omega(n) * im%Z(n, i)) ** 2 &

272 + (x%energy - oc%mu + im%chi(n, i)) ** 2 + im%phi(n, i) ** 2)

273

274 A(n, i) = sum(trapezia)

275 B(n, i) = sum(trapezia * x%energy)

276

277 integral_Z (n, i) = A(n, i) * im%Z (n, i) * im%omega(n)

278 integral_phi(n, i) = A(n, i) * im%phi(n, i)

279 integral_chi(n, i) = A(n, i) * (im%chi(n, i) - oc%mu) + B(n, i)

280 end subroutine integrate

281

282 end subroutine self_energy

283

284 subroutine initialize(x)

285 type(parameters), intent(in) :: x

286

287 integer :: i

288

289 initial = .false.

290

291 if (allocated(weight )) deallocate(weight)

292 allocate(weight(size(x%energy), x%bands ))

293

294 if (allocated(trapezia )) deallocate(trapezia)

295 allocate(trapezia(size(x%energy )))

296

297 if (allocated(matsum )) deallocate(matsum)

298 allocate(matsum(size(x%energy )))

299

300 call differential(x%energy , weight(:, 1))

301

302 do i = 2, x%bands

303 weight(:, i) = weight(:, 1)

304 end do

305

306 weight(:, :) = weight * x%dos

307

308 states = sum(weight)

309

310 weight(:, :) = weight / states

311 end subroutine initialize

312 end module eliashberg_self_energy

B.3.2 self_energy_cdos.f90

Just as the preceding one, this module calculates the self-energy, but within the CDOS
approximation defined in Eq. 4.9. Accordingly, the Coulomb pseudo-potential is rescaled
following Eq. 4.20.

1 module eliashberg_self_energy_cdos

2 use global

3 implicit none

4

5 private

6 public :: self_energy_cdos

7
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8 contains

9

10 subroutine self_energy_cdos(x, im)

11 type(parameters), intent(in) :: x

12 type(matsubara), intent(out) :: im

13

14 real(dp) :: nE , Z, Delta

15

16 real(dp), allocatable :: lambda(:, :, :), mu(:, :, :)

17 real(dp), allocatable :: muStar(:, :), A(:, :)

18

19 integer :: step , i, j, n, m, no , nC

20 logical :: done

21

22 nE = x%omegaE / (2 * pi * kB * x%T)

23

24 no = ceiling(x%cutoff * nE - 0.5_dp)

25 nC = ceiling(x%cutoffC * nE - 0.5 _dp)

26

27 allocate(im%omega (0:no - 1))

28

29 do n = 0, no - 1

30 im%omega(n) = (2 * n + 1) * pi * kB * x%T

31 end do

32

33 allocate(lambda (1 - no:2 * no - 1, x%bands , x%bands))

34

35 do n = 1 - no , 2 * no - 1

36 lambda(n, :, :) = x%lambda / (1 + (n / nE) ** 2)

37 end do

38

39 allocate(muStar(x%bands , x%bands))

40

41 if (x%rescale) then

42 muStar(:, :) = x%muStar / (1 + x%muStar * log(nE / (nC + 0.5 _dp)))

43 else

44 muStar(:, :) = x%muStar

45 end if

46

47 allocate(mu(0:no - 1, x%bands , x%bands))

48

49 do n = 0, nC - 1

50 mu(n, :, :) = -2 * muStar

51 end do

52

53 mu(nC:, :, :) = 0

54

55 allocate(im%Z(0:no - 1, x%bands))

56

57 im%Z(:, :) = 1

58

59 allocate(im%Delta (0:no - 1, x%bands))

60

61 im%Delta(:, :) = 0

62

63 if (.not. x%normal) im%Delta(0, :) = 1

64

65 allocate(A(0:no - 1, x%bands))

66

67 do i = 1, x%bands

68 A(:, i) = 1 / sqrt(im%omega ** 2 + im%Delta(:, i) ** 2)
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69 end do

70

71 im%status = -1

72

73 do step = 1, x%limit

74 done = .true.

75

76 do i = 1, x%bands

77 do n = 0, no - 1

78 Z = 0

79 Delta = 0

80

81 do j = 1, x%bands

82 do m = 0, no - 1

83 Z = Z + im%omega(m) * A(m, j) &

84 * (lambda(n - m, j, i) - lambda(n + m + 1, j, i))

85

86 Delta = Delta + im%Delta(m, j) * A(m, j) * (mu(m, j, i) &

87 + lambda(n - m, j, i) + lambda(n + m + 1, j, i))

88 end do

89 end do

90

91 Z = 1 + pi * kB * x%T * Z / im%omega(n)

92 Delta = pi * kB * x%T * Delta / Z

93

94 done = done &

95 .and. (im%Z (n, i) .ap. Z) &

96 .and. (im%Delta(n, i) .ap. Delta)

97

98 im%Z (n, i) = Z

99 im%Delta(n, i) = Delta

100

101 A(n, i) = 1 / sqrt(im%omega(n) ** 2 + Delta ** 2)

102 end do

103 end do

104

105 if (done) then

106 im%status = step

107 exit

108 end if

109 end do

110

111 allocate(im%phiC(x%bands ))

112

113 do i = 1, x%bands

114 im%phiC(i) = pi * kB * x%T * sum(im%Delta * A * mu(:, :, i))

115 end do

116 end subroutine self_energy_cdos

117 end module eliashberg_self_energy_cdos

B.3.3 eigenvalue.f90

This module determines the maximum eigenvalue of the Eliashberg kernel which takes the
density of states into account. Since the kernel, defined in Eq. 4.29, is returned by the self-
energy solver presented in Section B.3.1, all that has to be done is call the eigenvalue solvers
and optionally cache the eigenvector to be reused as initial guess if the number of Matsubara
frequencies remains constant.

1 module eliashberg_eigenvalue
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2 use eigenvalues

3 use eliashberg_self_energy

4 use global

5 implicit none

6

7 private

8 public :: eigenvalue

9

10 contains

11

12 subroutine eigenvalue(status , x)

13 type(parameters), intent(in) :: x

14

15 real(dp), intent(out) :: status ! greatest eigenvalue

16

17 real(dp), allocatable :: kernel(:, :) ! Eliashberg kernel

18 real(dp), allocatable , save :: phi(:) ! order parameter

19

20 type(matsubara) :: im

21 type(occupancy) :: oc

22

23 call self_energy(x, im , oc , kernel)

24

25 if (x%power .and. x%bands .eq. 1) then

26 if (allocated(phi)) then

27 if (size(phi) .ne. size(kernel , 2)) deallocate(phi)

28 end if

29

30 if (.not. allocated(phi)) then

31 allocate(phi(size(kernel , 2)))

32

33 phi(:) = 0

34 phi(1) = 1

35 end if

36

37 call power_method(kernel , phi , status)

38 else

39 status = maxval(real(spectrum(kernel), dp))

40 end if

41 end subroutine eigenvalue

42 end module eliashberg_eigenvalue

B.3.4 eigenvalue_cods.f90

Again, a procedure analogous to the preceding one is reimplemented for the CDOS approximation,
Eq. 4.27. In this case, however, an exact analytic expression for the renormalization is known
which saves the expenses of calling the self-energy solver. For convenience, not only the
respective eigenvector but also the memory allocation of all non-scalar quantities is saved
where possible, i.e. if the number of Matsubara frequencies is not altered.

1 module eliashberg_eigenvalue_cdos

2 use eigenvalues

3 use global

4 implicit none

5

6 private

7 public :: eigenvalue_cdos

8

9 contains
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10

11 subroutine eigenvalue_cdos(status , x)

12 type(parameters), intent(in) :: x

13

14 real(dp), intent(out) :: status ! greatest eigenvalue

15

16 real(dp), allocatable , save :: &

17 lambda(:, :, :), & ! adjusted phonon Green function

18 muStar(:, :), & ! Coulomb pseudo -potential

19 matrix(:, :), & ! Eliashberg kernel

20 vector (:), & ! order parameter

21 values (:), & ! all eigenvalues

22 diag (:) ! diagonal renormalization contribution

23

24 integer :: no ! index of overall cutoff frequency

25 integer :: nC ! index of Coulomb cutoff frequency

26

27 integer , save :: no0 = -1 ! 'no' from previous subroutine call

28

29 integer :: i, j ! band indices

30 integer :: n, m ! frequency indices

31 integer :: p, q ! index offsets

32

33 real(dp) :: nE ! 'index ' defining omegaE as bosonic Matsubara frequency

34

35 nE = x%omegaE / (2 * pi * kB * x%T)

36

37 no = ceiling(x%cutoff * nE - 0.5 _dp)

38 nC = ceiling(x%cutoffC * nE - 0.5_dp)

39

40 if (no .ne. no0) then

41 if (no0 .ne. -1) then

42 deallocate(lambda)

43 deallocate(muStar)

44 deallocate(matrix)

45 deallocate(vector)

46 deallocate(values)

47 deallocate(diag)

48 end if

49

50 allocate(lambda (1 - no:2 * no - 1, 0:x%bands - 1, 0:x%bands - 1))

51 allocate(muStar( 0:x%bands - 1, 0:x%bands - 1))

52

53 allocate(matrix (0:x%bands * no - 1, 0:x%bands * no - 1))

54 allocate(vector (0:x%bands * no - 1))

55 allocate(values (0:x%bands * no - 1))

56

57 allocate(diag (0:x%bands * no - 1))

58

59 vector (:) = 0

60 vector (0) = 1

61

62 no0 = no

63 end if

64

65 do n = 1 - no , 2 * no - 1

66 lambda(n, :, :) = x%lambda / (1 + (n / nE) ** 2)

67 end do

68

69 if (x%rescale) then

70 muStar(:, :) = x%muStar / (1 + x%muStar * log(nE / (nC + 0.5 _dp)))
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71 else

72 muStar(:, :) = x%muStar

73 end if

74

75 do i = 0, x%bands - 1

76 p = i * no

77

78 do j = 0, x%bands - 1

79 q = j * no

80

81 do n = 0, no - 1

82 do m = 0, no - 1

83 matrix(q + m, p + n) &

84 = lambda(n - m, j, i) + lambda(n + m + 1, j, i)

85 end do

86 end do

87

88 matrix(q:q + nC - 1, p:p + no - 1) = &

89 matrix(q:q + nC - 1, p:p + no - 1) - 2 * muStar(j, i)

90 end do

91 end do

92

93 do i = 0, x%bands - 1

94 p = i * no

95

96 if (x%imitate) then

97 do n = 0, no - 1

98 diag(p + n) = sum &

99 (lambda(n:n - no + 1:-1, :, i) - lambda(n + 1:n + no , :, i))

100 end do

101 else

102 diag(p) = sum(lambda(0, :, i))

103

104 do n = 1, no - 1

105 diag(p + n) = diag(p + n - 1) + 2 * sum(lambda(n, :, i))

106 end do

107 end if

108 end do

109

110 do i = 0, x%bands * no - 1

111 matrix(i, i) = matrix(i, i) - diag(i)

112 end do

113

114 do m = 0, no - 1

115 matrix(m::no , :) = matrix(m::no, :) / (2 * m + 1)

116 end do

117

118 if (x%power .and. x%bands .eq. 1) then

119 call power_method(matrix , vector , status)

120 else

121 values (:) = real(spectrum(matrix), dp)

122 status = maxval(values)

123 end if

124 end subroutine eigenvalue_cdos

125 end module eliashberg_eigenvalue_cdos
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B.4 Continuation to the real axis

The following two modules are concerned with the analytic continuation of the imaginary-axis
results to the real axis by means of Padé approximants. The first provides the approximant, the
second applies it to the results.

B.4.1 pade.f90

This is the actual implementation of the algorithm given in Section 4.10. Since there is no
interest in the intermediate approximants, the backward-recurrence method is used. For each
set of values on the imaginary axis, the coefficients are calculated only once; thereafter arbitrary
real-axis values can be requested until the module is reinitialized with a new data set.

1 module real_axis_pade

2 use global

3 implicit none

4

5 private

6 public :: coefficients , continuation

7

8 integer :: n

9 complex(qp), allocatable :: c(:, :)

10

11 contains

12

13 subroutine coefficients(z, u)

14 real(dp), intent(in) :: z(:), u(:)

15

16 complex(dp), parameter :: i = (0, 1)

17 integer :: p

18

19 n = size(z)

20

21 if (allocated(c)) deallocate(c)

22 allocate(c(n, n))

23

24 if (all(u .ap. 0.0_dp)) then

25 c(:, :) = 0

26 return

27 end if

28

29 c(1, :) = u

30

31 do p = 2, n

32 c(p, p:) = (c(p - 1, p - 1) - c(p - 1, p:)) &

33 / (i * (z(p:) - z(p - 1)) * c(p - 1, p:))

34

35 c(p, p - 1) = -i * z(p - 1) * c(p, p)

36 end do

37 end subroutine coefficients

38

39 elemental function continuation(x)

40 complex(dp) :: continuation

41 real(dp), intent(in) :: x

42

43 complex(qp) :: frac

44 integer :: p

45

46 frac = 1

47
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48 do p = n, 2, -1

49 frac = 1 + (c(p, p) * x + c(p, p - 1)) / frac

50 end do

51

52 frac = c(1, 1) / frac

53

54 continuation = cmplx(frac , kind=dp)

55 end function continuation

56 end module real_axis_pade

B.4.2 real_axis.f90

This subroutine applies the above algorithm to the previously calculated self-energy. It may
calculate both the measurable gap defined in Eq. 5.1 via a fixed-point iteration and the real-axis
self-energy on an equidistantly discretized interval.

1 module real_axis

2 use global

3 use real_axis_pade

4 use tools , only: interval

5 implicit none

6

7 private

8 public :: realize

9

10 contains

11

12 subroutine realize(x, im , re)

13 type(parameters), intent(in) :: x

14 type(matsubara), intent(in) :: im

15 type(continued), intent(out) :: re

16

17 integer :: i, n

18 real(dp) :: Delta0

19

20 if (x%measurable) then

21 allocate(re%Delta0(x%bands ))

22 allocate(re%status(x%bands ))

23 end if

24

25 if (x%resolution .gt. 0) then

26 allocate(re%omega(x%resolution ))

27 allocate(re%Delta(x%resolution , x%bands ))

28 allocate(re%Z(x%resolution , x%bands))

29

30 if (x%chi) allocate(re%chi(x%resolution , x%bands))

31 end if

32

33 if (x%measurable .or. x%resolution .gt. 0) then

34 do i = 1, x%bands

35 call coefficients(im%omega , im%Delta(:, i))

36

37 if (x%measurable) then

38 re%Delta0(i) = 1

39 re%status(i) = -1

40

41 do n = 1, x%limit

42 Delta0 = real(continuation(re%Delta0(i)))

43
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44 if (re%Delta0(i) .ap. Delta0) re%status(i) = n

45

46 re%Delta0(i) = Delta0

47

48 if (n .eq. re%status(i)) exit

49 end do

50 end if

51

52 if (x%resolution .gt. 0) then

53 call interval(re%omega , 0.0_dp , x%clip * x%omegaE , &

54 lower=.true., upper=.true.)

55

56 re%Delta(:, i) = continuation(re%omega)

57

58 call coefficients(im%omega , im%Z(:, i))

59 re%Z(:, i) = continuation(re%omega)

60

61 if (x%chi) then

62 call coefficients(im%omega , im%chi(:, i))

63 re%chi(:, i) = continuation(re%omega)

64 end if

65 end if

66 end do

67 end if

68 end subroutine realize

69 end module real_axis

B.5 I/O

Subsequently, the input and output routines are presented. As stated at the beginning of the
chapter, the input is always via the command-line, whereas the output is directed towards either
the standard output or disk.

B.5.1 load.f90

This module is responsible for loading the command-line arguments, initializing the coupling
matrices and, possibly, reading the density of states from a given file.

1 module io_load

2 use global

3 use tools , only: argument , matches

4 implicit none

5

6 private

7 public :: load

8

9 contains

10

11 subroutine load(x)

12 type(parameters), intent(out) :: x

13

14 character (:), allocatable :: setting ! command -line argument

15 character (:), allocatable :: lhs , rhs ! left - and right -hand side

16

17 character (:), allocatable :: lambda ! string defining lambda

18 character (:), allocatable :: muStar ! string defining muStar

19

20 integer :: equals ! position of '='
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21

22 integer :: i ! band index

23 integer :: n ! argument number

24

25 character (99) :: dos_file = 'none' ! file with density of states

26

27 real(dp) :: elements ! number of elements in lambda and muStar

28

29 elements = x%bands ** 2

30

31 do n = 1, command_argument_count ()

32 setting = argument(n)

33

34 equals = index(setting , '=')

35

36 lhs = setting (: equals - 1)

37 rhs = setting(equals + 1:)

38

39 select case (lhs)

40 case ('file'); read (rhs , '(A)') x%file

41 case ('form'); read (rhs , '(A)') x%form

42

43 case ('tell'); read (rhs , *) x%tell

44

45 case ('T'); read (rhs , *) x%T

46

47 case ('omegaE '); read (rhs , *) x%omegaE

48 case ('cutoff '); read (rhs , *) x%cutoff

49 case ('cutoffC '); read (rhs , *) x%cutoffC

50

51 case ('lambda ', 'lamda ')

52 lambda = rhs

53 elements = matches(rhs , ',') + 1

54

55 case ('muStar ', 'mu*')

56 muStar = rhs

57 elements = matches(rhs , ',') + 1

58

59 case ('dos'); read (rhs , *) dos_file

60

61 case ('n'); read (rhs , *) x%n

62 case ('mu'); read (rhs , *) x%mu

63

64 case ('conserve '); read (rhs , *) x%conserve

65

66 case ('limit '); read (rhs , *) x%limit

67

68 case ('epsilon '); read (rhs , *) epsilon

69 case ('error '); read (rhs , *) x%error

70 case ('zero'); read (rhs , *) x%zero

71 case ('rate'); read (rhs , *) x%rate

72

73 case ('clip'); read (rhs , *) x%clip

74

75 case ('resolution '); read (rhs , *) x%resolution

76 case ('measurable '); read (rhs , *) x%measurable

77

78 case ('rescale '); read (rhs , *) x%rescale

79 case ('imitate '); read (rhs , *) x%imitate

80

81 case ('normal '); read (rhs , *) x%normal
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82

83 case ('power '); read (rhs , *) x%power

84

85 case default

86 print "('Ignored unknown parameter ''', A, '''')", lhs

87 end select

88 end do

89

90 x%bands = nint(sqrt(elements ))

91

92 allocate(x%lambda(x%bands , x%bands ))

93 allocate(x%muStar(x%bands , x%bands ))

94

95 if (allocated(lambda )) then

96 read (lambda , *) x%lambda

97 else

98 x%lambda(:, :) = 0

99

100 do i = 1, x%bands

101 x%lambda(i, i) = 1

102 end do

103 end if

104

105 if (allocated(muStar )) then

106 read (muStar , *) x%muStar

107 else

108 x%muStar(:, :) = 0

109 end if

110

111 if (dos_file .ne. 'none') then

112 x%chi = .true.

113 call load_dos(dos_file , x)

114 end if

115

116 if (x%cutoffC .lt. 0) x%cutoffC = x%cutoff

117 end subroutine load

118

119 subroutine load_dos(file , x)

120 character (*), intent(in) :: file

121 type(parameters), intent(inout) :: x

122

123 integer :: n, m

124

125 real(dp) :: test

126 integer :: error

127

128 open (unit , file=file , action='read', status='old')

129

130 n = 0 ! density -of-states resolution

131

132 do

133 read (unit , *, iostat=error) test

134 if (error .ne. 0) exit

135 n = n + 1

136 end do

137

138 rewind unit

139

140 allocate(x%energy(n)) ! free -electron energy (eV)

141 allocate(x%dos(n, x%bands )) ! density of states (a.u.)

142
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143 do m = 1, n

144 read(unit , *) x%energy(m), x%dos(m, :)

145 end do

146

147 close (unit)

148 end subroutine load_dos

149 end module io_load

B.5.2 store.f90

If the results shall be processed further with the help of other programs, it is desirable that
no information is lost during the transfer process. Hence, the unformatted output of the data
in their internal representation is provided by the following routine. It creates binary files
which are structured by textual statements which define the identifier, dimension and type of
the following data. This file format is understood by the Python interface module described in
Section B.1.

1 module io_store

2 use global

3 implicit none

4

5 private

6 public :: store

7

8 contains

9

10 subroutine store(x, im, re , oc)

11 type(parameters), intent(in) :: x

12 type(matsubara), intent(in) :: im

13 type(continued), intent(in) :: re

14 type(occupancy), intent(in) :: oc

15

16 open (unit , &

17 file=x%file , action='write ', status='replace ', access='stream ')

18

19 write (unit) 'INT:DIM:', 0_i4

20 write (unit) 'status:', im%status

21

22 write (unit) 'REAL:DIM:', 1_i4 , size(im%omega , kind=i4)

23 write (unit) 'iomega:', im%omega

24

25 if (x%bands .gt. 1) &

26 write (unit) 'DIM:', 2_i4 , x%bands , size(im%omega , kind=i4)

27

28 write (unit) 'Z:', im%Z

29 write (unit) 'Delta:', im%Delta

30

31 if (x%chi) then

32 write (unit) 'chi:', im%chi

33

34 write (unit) 'DIM:', 0_i4

35

36 write (unit) 'n0:', oc%n0

37 write (unit) "n:", oc%n

38

39 write (unit) 'mu0:', oc%mu0

40 write (unit) "mu:", oc%mu

41 end if

42
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43 write (unit) 'DIM:'

44

45 if (x%bands .gt. 1) then

46 write (unit) 1_i4 , x%bands

47 else

48 write (unit) 0_i4

49 end if

50

51 write (unit) 'phiC:', im%phiC

52

53 if (x%measurable) then

54 write (unit) 'INT:status0:', re%status

55 write (unit) 'REAL:Delta0:', re%Delta0

56 end if

57

58 if (x%resolution .gt. 0) then

59 write (unit) 'DIM:', 1_i4 , x%resolution

60

61 write (unit) 'omega:', re%omega

62

63 if (x%bands .gt. 1) write (unit) 'DIM:', 2_i4 , x%bands , x%resolution

64

65 write (unit) 'Re[Z]:', real(re%Z)

66 write (unit) 'Im[Z]:', aimag(re%Z)

67

68 write (unit) 'Re[Delta]:', real(re%Delta)

69 write (unit) 'Im[Delta]:', aimag(re%Delta)

70

71 if (x%chi) then

72 write (unit) 'Re[chi]:', real(re%chi)

73 write (unit) 'Im[chi]:', aimag(re%chi)

74 end if

75 end if

76

77 close (unit)

78 end subroutine store

79 end module io_store

B.5.3 tell.f90

If the results shall be displayed in a human-readable fashion, the following module comes into
play. It formats the results considering a possibly defined edit descriptor and prints them to
the standard output. If the storage on disk is preferred, the output can be redirected via the
command line like this:

$ ebmb T=10 lambda=1 muStar=0.1 > self-energy.txt

1 module io_tell

2 use formatting

3 use global

4 implicit none

5

6 private

7 public :: tell

8

9 contains

10

11 subroutine tell(x, im , re , oc)

12 type(parameters), intent(in) :: x
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13 type(matsubara), intent(in) :: im

14 type(continued), intent(in) :: re

15 type(occupancy), intent(in) :: oc

16

17 integer :: i, n ! band and Matsubara indices

18

19 character (:), allocatable :: head , body , form ! edit descriptors

20

21 call measure(x%form)

22

23 head = edit('(7Aw)')

24 body = edit('(7x)')

25

26 print "('imaginary -axis solution [', I0, ']:', /)", im%status

27

28 if (x%chi) then

29 print head , 'omega/eV', 'Z', 'Delta/eV', 'chi/eV'

30

31 do i = 1, x%bands

32 print rule (4)

33

34 do n = 0, size(im%omega) - 1

35 print body , im%omega(n), im%Z(n, i), im%Delta(n, i), im%chi(n, i)

36 end do

37 end do

38 else

39 print head , 'omega/eV', 'Z', 'Delta/eV'

40

41 do i = 1, x%bands

42 print rule (3)

43

44 do n = 0, size(im%omega) - 1

45 print body , im%omega(n), im%Z(n, i), im%Delta(n, i)

46 end do

47 end do

48 end if

49

50 form = edit('(x)')

51

52 if (x%chi) then

53 print "(/, 'initial and final occupancy number:', /)"

54 print edit(form), oc%n0, oc%n

55

56 print "(/, 'initial and final chemical potential (eV):', /)"

57 print edit(form), oc%mu0 , oc%mu

58 end if

59

60 print "(/, 'constant Coulomb contribution (eV):', /)"

61 print edit(form), im%phiC

62

63 if (x%measurable) then

64 print "(/, 'measurable gap (eV):', /)"

65

66 form = edit("(x, ' [', I0, ']')")

67

68 do i = 1, x%bands

69 print form , re%Delta0(i), re%status(i)

70 end do

71 end if

72

73 if (x%resolution .gt. 0) then
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74 print "(/, 'real -axis solution:', /)"

75

76 if (x%chi) then

77 print head , 'omega/eV', 'Re[Z]', 'Im[Z]', &

78 'Re[Delta]/eV', 'Im[Delta]/eV', 'Re[chi]', 'Im[chi]'

79

80 do i = 1, x%bands

81 print rule (7)

82

83 do n = 1, x%resolution

84 print body , re%omega(n), re%Z(n, i), &

85 re%Delta(n, i), re%chi(n, i)

86 end do

87 end do

88 else

89 print head , &

90 'omega/eV', 'Re[Z]', 'Im[Z]', 'Re[Delta]/eV', 'Im[Delta]/eV'

91

92 do i = 1, x%bands

93 print rule (5)

94

95 do n = 1, x%resolution

96 print body , re%omega(n), re%Z(n, i), re%Delta(n, i)

97 end do

98 end do

99 end if

100 end if

101 end subroutine tell

102 end module io_tell

B.6 Programs

At this point all modules and their corresponding subroutines and functions have been presented.
Yet to be discussed are the actual executable programs by which they are used, namely ebmb,
critical and tc.

B.6.1 ebmb.f90

The workflow of ebmb is simple: load the parameters, call the desired self-energy solver,
optionally continue the results to the real axis and output them via the desired channels.

1 program ebmb

2 use eliashberg_self_energy

3 use eliashberg_self_energy_cdos

4 use global

5 use io_load

6 use io_store

7 use io_tell

8 use real_axis

9 implicit none

10

11 type(parameters) :: x

12 type(matsubara) :: im

13 type(continued) :: re

14 type(occupancy) :: oc

15

16 call load(x)

17
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18 if (x%chi) then

19 call self_energy(x, im , oc)

20 else

21 call self_energy_cdos(x, im)

22 end if

23

24 call realize(x, im , re)

25

26 if (x%file .ne. 'none') call store(x, im, re , oc)

27

28 if (x%tell) call tell(x, im , re , oc)

29 end program ebmb

Example of application

Below, the usage of ebmb on the command line is exemplified:

$ ebmb T=10 lambda=1 muStar=0.1 resolution=300

imaginary-axis solution [66]:

omega/eV Z Delta/eV

________________________________________________

0.002707214062 1.967226661541 0.002590550215

0.008121642186 1.927225217112 0.002403912680

0.013536070311 1.861850034908 0.002090211042

. . . . . . . . .

0.284257476526 1.072524734721 -0.000838949545

0.289671904651 1.064021558735 -0.000840387592

0.295086332775 1.054374032052 -0.000841668334

constant Coulomb contribution (eV):

-0.000868488361

real-axis solution:

omega/eV Re[Z] Im[Z] Re[Delta]/eV Im[Delta]/eV

________________________________________________________________________________

0.000000000000 1.972750967345 0.000000000000 0.002615530353 0.000000000000

0.001003344482 1.973490139549 0.000055160511 0.002619009158 -0.000000029469

0.002006688963 1.975724185412 0.000092322544 0.002629488374 -0.000000045184

. . . . . . . . . . . . . . .

0.297993311037 1.002267219390 0.105412692473 -0.000896723088 -0.000007474029

0.298996655518 1.002244792387 0.105059048188 -0.000896528744 -0.000007407687

0.300000000000 1.002222640329 0.104707774935 -0.000896336488 -0.000007342091

B.6.2 critical.f90

critical does not only call the appropriate Eliashberg eigenvalue solver but also performs
individual tasks, namely the identification of the variable parameter and its optimization via the
bisection method.

1 program critical

2 use eliashberg_eigenvalue

3 use eliashberg_eigenvalue_cdos

4 use global

5 use io_load
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6 implicit none

7

8 type(parameters), target :: x

9

10 real(dp), pointer :: variable => null() ! parameter to be optimized

11

12 procedure(eigenvalue), pointer :: solver => null() ! solver to be used

13

14 real(dp) :: bound (2) ! bisection bounds

15

16 real(dp) :: status ! greatest eigenvalue

17 real(dp) :: status0 ! ... in previous step

18

19 logical :: sc1 ! bound (1) within superconducting phase?

20 logical :: try ! still trying out direction?

21

22 integer :: i, j ! band indices

23

24 call load(x)

25

26 variable => x%T

27

28 if (x%T .lt. 0) then

29 variable => x%T

30 variable = -variable

31 end if

32

33 if (x%omegaE .lt. 0) then

34 variable => x%omegaE

35 variable = -variable

36 end if

37

38 do i = 1, x%bands

39 do j = 1, x%bands

40 if (x%lambda(j, i) .lt. 0) then

41 variable => x%lambda(j, i)

42 variable = -variable

43 end if

44

45 if (x%muStar(j, i) .lt. 0) then

46 variable => x%muStar(j, i)

47 variable = -variable

48 end if

49 end do

50 end do

51

52 if (x%chi) then

53 solver => eigenvalue

54 else

55 solver => eigenvalue_cdos

56 end if

57

58 call solver(status , x)

59

60 status0 = status

61

62 sc1 = status .ge. 1

63 try = .true.

64

65 do

66 bound (1) = variable
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67 variable = variable * (1 + x%rate)

68

69 call solver(status , x)

70

71 if (status .eq. status0) stop 'stationary point'

72

73 if (sc1 .neqv. status .ge. 1) exit

74

75 if (sc1 .eqv. status .gt. status0) then

76 if (try) then

77 variable = bound (1)

78 x%rate = -x%rate

79 try = .false.

80 cycle

81 end if

82

83 stop 'local extremum '

84 end if

85

86 status0 = status

87 end do

88

89 bound (2) = variable

90

91 do

92 variable = sum(bound) / 2

93

94 if (abs(variable - bound (1)) .le. x%error) exit

95

96 call solver(status , x)

97

98 if (sc1 .eqv. status .ge. 1) then

99 bound (1) = variable

100 else

101 bound (2) = variable

102 end if

103 end do

104

105 if (x%tell) print '(' // trim(x%form) // ')', variable

106

107 if (x%file .ne. 'none') then

108 open (unit , &

109 file=x%file , action='write ', status='replace ', access='stream ')

110 write (unit) variable

111 close (unit)

112 end if

113 end program critical

Examples of application

By default, the critical temperature is determined:

$ critical lambda=2,0.1,0.1,1

47.261724151225

In a second step one could determine an effective scalar coupling constant:

$ critical T=47.261724151225 lambda=-1

1.897134874960
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B.6.3 tc.f90

Finally, a program is presented which determines the critical temperatures for all bands
separately via the bisection method. Since this requires the calculation of the full self-energy
at each step of the iteration, the use of critical should be preferred, if possible.

1 program tc

2 use eliashberg_self_energy

3 use eliashberg_self_energy_cdos

4 use formatting

5 use global

6 use io_load

7 implicit none

8

9 type(parameters) :: x

10 type(matsubara) :: im

11 type(occupancy) :: oc

12

13 integer :: i, j ! band indices

14

15 real(dp), allocatable :: upper(:), lower(:), T(:) ! bounds and Tc's

16

17 character (:), allocatable :: head , body ! edit descriptors

18

19 call load(x)

20

21 if (x%tell) then

22 call measure(x%form)

23

24 head = edit('(Aw)')

25 body = edit('(x)')

26

27 print head , 'T/K'

28 print rule (1)

29 end if

30

31 allocate(T(x%bands ))

32

33 allocate(upper(x%bands ))

34 allocate(lower(x%bands ))

35

36 lower (:) = -1

37 upper (:) = -1

38

39 call bounds

40

41 BANDS: do i = 1, x%bands

42 x%T = upper(i)

43

44 do while (lower(i) .lt. 0)

45 if (x%T .le. x%error) then

46 T(i) = 0

47 cycle BANDS

48 end if

49

50 x%T = x%T * (1 - x%rate)

51 call bounds

52 end do

53

54 x%T = lower(i)

55
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56 do while (upper(i) .lt. 0)

57 x%T = x%T * (1 + x%rate)

58 call bounds

59 end do

60

61 do

62 x%T = (lower(i) + upper(i)) / 2

63

64 if (upper(i) - lower(i) .le. 2 * x%error) then

65 T(i) = x%T

66 cycle BANDS

67 end if

68

69 call bounds

70 end do

71 end do BANDS

72

73 if (x%tell) then

74 print *

75 print head , 'Tc/K'

76 print rule (1)

77 print body , T

78 end if

79

80 if (x%file .ne. 'none') then

81 open (unit , &

82 file=x%file , action='write ', status='replace ', access='stream ')

83 write (unit) T

84 close (unit)

85 end if

86

87 contains

88

89 subroutine bounds

90 if (x%tell) print body , x%T

91

92 if (x%chi) then

93 call self_energy(x, im , oc)

94 else

95 call self_energy_cDOS(x, im)

96 end if

97

98 do j = 1, x%bands

99 if (abs(im%Delta(0, j)) .le. x%zero) then

100 if (upper(j) .gt. x%T .or. upper(j) .lt. 0) upper(j) = x%T

101 else

102 if (lower(j) .lt. x%T .or. lower(j) .lt. 0) lower(j) = x%T

103 end if

104 end do

105 end subroutine bounds

106 end program tc

B.7 User manual

On the following pages, the user manual for the software package is displayed.
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ebmb

Solve multiband Eliashberg equations

Outline

This software provides three programs:

1. ebmb itself solves the multiband Eliashberg equations (Eqs. 1 or 2) on a cut-off imaginary

axis and optionally continues the results to the real axis via Padé approximants.

A material is defined by nothing but an Einstein phonon frequency, intra- and interband

electron-phonon couplings and Coulomb pseudo-potentials and, if desired, the band

densities of Bloch states, otherwise assumed to be constant.

2. tc finds the critical temperature for each band separately via the bisection method.

Superconductivity is defined by the order parameter exceeding a certain threshold.

3. critical finds the critical point via the bisection method varying a parameter of choice.

Superconductivity is defined by the kernel of the linearized gap equation (Eq. 3) having

an eigenvalue greater than or equal to unity. The shape of the density of states cannot

be taken into account.

Installation

The makefile is designed for the GNU or Intel Fortran compiler and may be run in optimization

or validation mode:

$ make compiler=gfortran mode=optimize (default)

... ifort ... validate

I/O

• Parameters are defined on the command line:

$ 〈program〉 〈key 1〉=〈value 1〉 〈key 2〉=〈value 2〉 ...

The available keys and default values are listed in Table 1.

• Unless tell=false, the results are printed to standard output.

• Unless file=none, a binary output file is created. For critical and tc it simply contains

one or more double precision floating point numbers, for ebmb the format defined in

Tables 2 and 3 is used.

• The provided Python wrapper functions load the results into NumPy arrays:

import ebmb

results = ebmb.get(〈program〉, 〈file〉, 〈replace〉,
〈key 1〉=〈value 1〉, 〈key 2〉=〈value 2〉, ...)

〈replace〉 decides whether an existing 〈file〉 is used or overwritten.

Given a band structure, its discretized domain and n − 1 filters, an input file with the

density of states resolved for n subdomains is generated like this:

from numpy import cos, dot, linspace, pi

DOSfile('dos.in', epsilon=lambda *k: -cos(k).sum() / 2,

domain=[linspace(-pi, pi, 1000, endpoint=False)] * 2,

filters=[lambda *k: pi ** 2 / 2 <= dot(k, k) <= pi ** 2])

1
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Eliashberg theory

Let h̄ = kB = 1. Fermionic and bosonic Matsubara frequencies are defined as ωn = (2n+1)πT

and νn = 2nπT , respectively. The quantity of interest is the Nambu self-energy matrix1

Σ i(n) = iωn[1 − Zi(n)]1 + Zi(n) ∆i(n)
︸ ︷︷ ︸

φi(n)

σ1 + χi(n)σ3,

where the Pauli matrices are defined as usual and i is a band index. Renormalization Zi(n),
order parameter φi(n) and energy shift χi(n) are determined by the Eliashberg equations2

Zi(n) = 1 +
T

ωn

∑

j

N−1∑

m=0

∫ ∞

−∞

dε
nj (ε)

nj (µ0)

ωmZj (m)

Θj (ε, m)
Λ−

ij (n, m),

φi(n) = T
∑

j

N−1∑

m=0

∫ ∞

−∞

dε
nj (ε)

nj (µ0)

φj (m)

Θj (ε, m)
[Λ+

ij (n, m) − U∗
ij (m)],

χi(n) = −T
∑

j

N−1∑

m=0

∫ ∞

−∞

dε
nj (ε)

nj (µ0)

ε − µ + χj (m)

Θj (ε, m)
Λ+

ij (n, m),

Θi(ε, n) = [ωnZi(n)]2 + φ2
i (n) + [ε − µ + χi(n)]2,

(1)

and may then be analytically continued to the real-axis by means of Padé approximants.3 The

electron-phonon coupling matrices and the rescaled Coulomb pseudo-potential are connected

to the corresponding input parameters via

Λ±
ij (n, m) = λij (n − m) ± λij (n + m + 1), λij (n) =

λij

1 +
[

νn

ωE

]2
,

U∗
ij (m) =

{

2µ∗
ij (NC) for m < NC,

0 otherwise,

1

µ∗
ij (NC)

=
1

µ∗
ij

+ ln
ωE

ωNC

,

or, if the band density ni(ε) of Bloch states with energy ε per spin, band and unit cell is given,

1

µ∗
ij (NC)

=
1

µ∗
ij

+ ln
2ωE

D
+

1

π

∑

i

∫ ∞

−∞

dε
ni(ε)

ni(µ0)

{
1

ε−µ0
arctan ε−µ0

ωNC
for ε 6= µ0,

1
ωNC

otherwise,

where D is the electronic bandwidth. µ0 and µ are the chemical potentials for free and inter-

acting particles, respectively. The latter ensures that the particle number is conserved:

2
∑

i

∫ ∞

−∞

dε
ni(ε)

e(ε−µ0)/T + 1
= n0

!
= n ≈ 1 − 4T

∑

i

∫ ∞

−∞

dε ni(ε)

[
N−1∑

n=0

ε − µ + χi(n)

Θi(ε, n)
+

arctan ε−µ
ωN

2πT

]

.

Approximating ni(ε) ≈ ni(µ0) yields χi(n) = 0 and the constant-DOS Eliashberg equations

Zi(n) = 1 +
πT

ωn

∑

j

N−1∑

m=0

ωm
√

ω2
m + ∆2

j (m)
Λ−

ij (n, m),

∆i(n) =
πT

Z (n)

∑

j

N−1∑

m=0

∆j (m)
√

ω2
m + ∆2

j (m)
[Λ+

ij (n, m) − U∗
ij (m)].

(2)

1Y. Nambu, Phys. Rev. 117, 648 (1960)
2G. M. Eliashberg, Soviet Phys. JETP 11, 696 (1960).

A comprehensive review is given by P. B. Allen and B. Mitrović in Solid state physics 37 (1982)
3H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977)
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At the critical temperature, ∆i(m) is infinitesimal and negligible relative to ωm. This yields

∆i(n) =
∑

j

N−1∑

m=0

Kij (n, m) ∆j (m),

Kij (n, m) =
1

2m + 1
[Λ+

ij (n, m) − δijδnmDN
i (n) − U∗

ij (m)],

DN
i (n) =

∑

j

N−1∑

m=0

Λ−
ij (n, m)

N=∞
=

∑

j

[

λij + 2
n∑

m=1

λij (m)
]

.

(3)

Zi(n) is not biased by the cutoff if D∞
i (n) is used in place of DN

i (n) in the kernel Kij (n, m).
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key default un
it

sy
m
bo

l

description eb
mb

tc cr
it
ic
al

va
ria

bl
e

file none – – output file + + + −
form F16.12 – – number edit descriptor + + + −
tell true – – use standard output? + + + −

T 10 K T temperature + + + +

omegaE 0.02 eV ωE Einstein frequency + + + +
cutoff 15 ωE ωN overall cutoff frequency + + + −
cutoffC ωN ωE ωNC

Coulomb cutoff frequency + + + −

lambda 1 1 λij electron-phonon coupling + + + +
muStar 0 1 µ∗

ij Coulomb pseudo-potential + + + +

dos none – – file with density of states + + + −
n – 1 n0 initial occupancy number + + + −
mu 0 eV µ0 initial chemical potential + + + −
conserve true – – conserve particle number? + + + −

limit 250000 1 – maximum number of iterations + + + −

epsilon 10−15 a.u. – negligible float difference + + + −
error 10−5 a.u. – bisection error − + + −
zero 10−10 eV – negligible gap at Tc (threshold) − + − −
rate 10−1 1 – growth rate for bound search − + + −

clip 15 ωE – maximum real-axis frequency + − − −
resolution 0 1 – resolution of real-axis solution + − − −
measurable false – – find measurable gap? + − − −

imitate false – – use Zi(n) biased by cutoff? − − + −
rescale true – – use µ∗

ij rescaled for cutoff? + + + −

normal false – – enforce normal state? + − − −

power true – – power method for single band? − − + −

Table 1: Input parameters.

• The columns ebmb, tc and critical show which keys are used by these programs.

• The rightmost column indicates which parameters may be chosen as variable for critical.

The variable is marked with a negative sign; its absolute value is used as initial guess.

If no parameter is negative, the critical temperature is searched for.

• lambda and muStar expect flattened square matrices of equal size the elements of which

are separated by commas. It is impossible to vary more than one element at once.

• dos has lines ε/eV n1/a.u. n2/a.u. . . . with ε ascending but not necessarily equidistant.
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〈characters key〉:〈n1 × . . . × nr numbers value〉
associate key with value

DIM:〈integer r〉〈r integers n1 . . . nr〉
define shape (column-major)

INT: take numbers as integers

REAL: take numbers as doubles

Table 2: Statements allowed in binary output.

The data types character, integer and double

take 1, 4 and 8 bytes of storage, respectively.

imaginary-axis results

iomega Matsubara frequency (without i) ωn

Delta gap ∆i(n)
Z renormalization Zi(n)
chi energy shift χi(n)
phiC constant Coulomb contribution φCi

status status (steps till convergence or −1) –

occupancy results

n0

n

initial

final

}

occupancy number
n0

n

mu0

mu

initial

final

}

chemical potential
µ0

µ

real-axis results resolution > 0

omega frequency ω

Re[Delta]

Im[Delta]

real

imaginary

}

gap ∆i(ω)

Re[Z]

Im[Z]

real

imaginary

}

renormalization Zi(ω)

Re[chi]

Im[chi]

real

imaginary

}

energy shift χi(ω)

measurable results measurable=true

Delta0 measurable gap ∆0i = Re[∆i(∆0i)]
status0 status of measurable gap –

Table 3: Keys used in binary output.

5



Acknowledgment

I would like to thank Professor Tim Wehling for the opportunity
to write my master’s thesis in this interesting field of physics,
Professor Gerd Czycholl for offering a second opinion, Malte
Rösner, Gunnar Schönhoff, Malte Schüler, Roelof Groenewald
and the whole working group for instructive discussions, Miriam
Nüß for the final proofreading, especially my parents Brigitte
Berges and Ulrich Seevers for continuously supporting my stud-
ies and finally all developers of public software and information.

96



Declarations

Authorship

I hereby declare that I have written the present thesis on my own and that none but the
referenced sources and aids were used. All passages that I have taken, literally or not, from
other works are identified as such and their respective origins specified.

Urheberrechtliche Erklärung: Hiermit versichere ich gemäß § 10 (11) der allgemeinen MPO
vom 27. Oktober 2010, dass ich die vorliegende Arbeit selbstständig verfasst und keine als
die angegebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die ich wörtlich oder
sinngemäß aus anderen Werken entnommen habe, habe ich unter Angabe der Quellen als
solche kenntlich gemacht.

Bremen, October 10, 2016

Jan Berges

Publication

I approve that my thesis may be consulted for research purposes in the university archives.

Erklärung zur Veröffentlichung von Abschlussarbeiten: Ich bin damit einverstanden, dass mei-
ne Abschlussarbeit im Universitätsarchiv für wissenschaftliche Zwecke von Dritten eingesehen
werden darf.

Bremen, October 10, 2016

Jan Berges

97



List of Figures

2.1 BCS gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Feynman diagrams for electron-phonon interaction . . . . . . . . . . . . . . . . . 14

4.1 CDOS approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Exact renormalization function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Square lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Self-energy at different temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Eliashberg gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Cutoff-induced errors of self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Convergence with cutoff frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.7 Convergence with number of integration points . . . . . . . . . . . . . . . . . . . 42
5.8 McMillan’s fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.9 Critical-temperature benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.10 Energy dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Switching on inter-band coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Hyperbolas of constant Tc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Asymptotes for inter-band coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 Effective scalar coupling strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

98



Bibliography

[1] W. L. McMillan: “Transition temperature of strong-coupled superconductors”. In: Phys.
Rev. 167 (1968), pp. 331–344. doi: 10.1103/PhysRev.167.331.

[2] P. B. Allen and R. C. Dynes: “Transition temperature of strong-coupled superconductors
reanalyzed”. In: Phys. Rev. B 12 (1975), pp. 905–922. doi: 10.1103/PhysRevB.12.905.

[3] W. L. McMillan and J. M. Rowell: “Tunneling and strong-coupling superconductivity”.
InRef.: 58, pp. 561–613.

[4] G. M. Eliashberg: “Interactions between electrons and lattice vibrations in a supercon-
ductor”. In: Sov. Phys. JETP 11 (1960), pp. 696–702.

[5] Y. Nakagawa and A. D. B. Woods: “Lattice dynamics of niobium”. In: Phys. Rev. Lett. 11

(1963), pp. 271–274. doi: 10.1103/PhysRevLett.11.271.

[6] H. J. Vidberg and J. W. Serene: “Solving the Eliashberg equations by means of N-
point Padé approximants”. In: J. Low Temp. Phys. 29 (1977), pp. 179–192. doi: 10.1007/
BF00655090.

[7] J. Bardeen, L. N. Cooper, and J. R. Schrieffer: “Microscopic theory of superconductivity”.
In: Phys. Rev. 106 (1957), pp. 162–164. doi: 10.1103/PhysRev.106.162.

[8] J. Bardeen, L. N. Cooper, and J. R. Schrieffer: “Theory of superconductivity”. In: Phys.
Rev. 108 (1957), pp. 1175–1204. doi: 10.1103/PhysRev.108.1175.

[9] H. Fröhlich: “History of the theory of superconductivity”. InRef.: 59, chap. 1, pp. 1–11.

[10] G. Czycholl: Theoretische Festkörperphysik. Von den klassischen Modellen zu modernen
Forschungsthemen. 3rd ed. (revised). Berlin, Heidelberg: Springer, 2008. doi: 10.1007/978-
3-540-74790-1.

[11] D. van Delft and P. Kes: “The discovery of superconductivity”. In: Phys. Today 63 (2010),
pp. 38–43. doi: 10.1063/1.3490499.

[12] H. Kamerlingh Onnes: “Further experiments with liquid helium. D. On the change of
electrical resistance of pure metals at very low temperatures, etc. V. The disappearance of
the resistance of mercury”. In: Proceedings, Koninklijke Akademie van Wetenschappen 14

(1911), pp. 113–115.

[13] W. Meißner and R. Ochsenfeld: “Ein neuer Effekt bei Eintritt der Supraleitfähigkeit”.
In: Naturwissenschaften 21 (1933), pp. 787–788. doi: 10.1007/BF01504252.

[14] F. London and H. London: “The electromagnetic equations of the supraconductor”. In:
Proc. R. Soc. A 149 (1935), pp. 71–88. doi: 10.1098/rspa.1935.0048.

[15] V. L. Ginzburg and L. D. Landau: “On the theory of superconductivity”. In: Zh. Eksp. Teor.
Fiz. 20 (1950), pp. 1064–1082. doi: 10.1007/978-3-540-68008-6_4.

[16] E. Maxwell: “Isotope effect in the superconductivity of mercury”. In: Phys. Rev. 78 (1950),
pp. 477–477. doi: 10.1103/PhysRev.78.477.

[17] C. A. Reynolds et al.: “Superconductivity of isotopes of mercury”. In: Phys. Rev. 78 (1950),
pp. 487–487. doi: 10.1103/PhysRev.78.487.

[18] H. Fröhlich: “Interaction of electrons with lattice vibrations”. In: Proc. R. Soc. A 215

(1952), pp. 291–298. doi: 10.1098/rspa.1952.0212.

99

https://doi.org/10.1103/PhysRev.167.331
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevLett.11.271
https://doi.org/10.1007/BF00655090
https://doi.org/10.1007/BF00655090
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1007/978-3-540-74790-1
https://doi.org/10.1007/978-3-540-74790-1
https://doi.org/10.1063/1.3490499
https://doi.org/10.1007/BF01504252
https://doi.org/10.1098/rspa.1935.0048
https://doi.org/10.1007/978-3-540-68008-6_4
https://doi.org/10.1103/PhysRev.78.477
https://doi.org/10.1103/PhysRev.78.487
https://doi.org/10.1098/rspa.1952.0212


100 BIBLIOGRAPHY

[19] W. Nolting: Grundkurs Theoretische Physik 7. Viel-Teilchen-Theorie. Berlin, Heidelberg:
Springer, 2015. doi: 10.1007/978-3-642-25808-4.

[20] N. N. Bogoliubov: “A new method in the theory of superconductivity. I”. In: Sov. Phys.
JETP 7 (1958), pp. 41–46.

[21] F. J. Dyson: “The radiation theories of Tomonaga, Schwinger, and Feynman”. In: Phys.
Rev. 75 (1949), pp. 486–502. doi: 10.1103/PhysRev.75.486.

[22] T. Matsubara: “A new approach to quantum-statistical mechanics”. In: Progr. Theoret.
Phys. 14 (1955), pp. 351–378. doi: 10.1143/PTP.14.351.

[23] G. D. Mahan: Many-particle physics. 3rd ed. New York: Kluwer Academic/Plenum Pub-
lishers, 2000.

[24] P. A. M. Dirac: The principles of quantum mechanics. 4th ed. (revised). The International
Series of Monographs on Physics 27. Oxford: Clarendon Press, 1958.

[25] F. J. Dyson: “The S matrix in quantum electrodynamics”. In: Phys. Rev. 75 (1949), pp. 1736–
1755. doi: 10.1103/PhysRev.75.1736.

[26] G.-C. Wick: “The evaluation of the collision matrix”. In: Phys. Rev. 80 (1950), pp. 268–272.
doi: 10.1103/PhysRev.80.268.

[27] D. J. Thouless: “Use of field theory techniques in quantum statistical mechanics”. In:
Phys. Rev. 107 (1957), pp. 1162–1163. doi: 10.1103/PhysRev.107.1162.

[28] M. Gaudin: “Une démonstration simplifiée du théorème de Wick en mécanique statistique”.
In: Nucl. Phys. 15 (1960), pp. 89–91. doi: 10.1016/0029-5582(60)90285-6.

[29] L. P. Gor’kov: “On the energy spectrum of superconductors”. In: Sov. Phys. JETP 7 (1958),
pp. 505–508.

[30] W. von der Linden, E. Berger, and P. Valášek: “The Hubbard-Holstein model”. In: J. Low
Temp. Phys. 99 (1995), pp. 517–525. doi: 10.1007/BF00752333.

[31] L. Hedin: “New method for calculating the one-particle Green’s function with application
to the electron-gas problem”. In: Phys. Rev. 139 (1965), pp. A796–A823. doi: 10.1103/
PhysRev.139.A796.

[32] L. Hedin and S. Lundqvist: “Effects of electron-electron and electron-phonon interactions
on the one-electron states of solids”. InRef.: 60, pp. 1–181. doi: 10.1016/S0081-1947(08)
60615-3.

[33] Y. Nambu: “Quasi-particles and gauge invariance in the theory of superconductivity”. In:
Phys. Rev. 117 (1960), pp. 648–663. doi: 10.1103/PhysRev.117.648.

[34] P. B. Allen and B. Mitrović: “Theory of superconducting Tc”. InRef.: 61, pp. 1–92. doi:
10.1016/S0081-1947(08)60665-7.

[35] S. Galasso: “Generalization of the Eliashberg equations and density functional theory
applied to the analysis of the fundamental properties of iron-based superconductors”.
PhD thesis. Politecnico di Torino, 2015. doi: 10.6092/polito/porto/2596360.

[36] E. R. Margine and F. Giustino: “Anisotropic Migdal-Eliashberg theory using Wannier
functions”. In: Phys. Rev. B 87 (2013), p. 024505. doi: 10.1103/PhysRevB.87.024505.

[37] A. B. Migdal: “Interaction between electrons and lattice vibrations in a normal metal”. In:
Sov. Phys. JETP 7 (1958), pp. 996–1001.

[38] P. B. Allen: “Fermi-surface harmonics: A general method for nonspherical problems.
Application to Boltzmann and Eliashberg equations”. In: Phys. Rev. B 13 (1976), pp. 1416–
1427. doi: 10.1103/PhysRevB.13.1416.

[39] D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins: “Strong-coupling superconductivity.
I”. In: Phys. Rev. 148 (1966), pp. 263–279. doi: 10.1103/PhysRev.148.263.

[40] V. Ambegaokar and L. Tewordt: “Theory of the electronic thermal conductivity of super-
conductors with strong electron-phonon coupling”. In: Phys. Rev. 134 (1964), A805–A815.
doi: 10.1103/PhysRev.134.A805.

https://doi.org/10.1007/978-3-642-25808-4
https://doi.org/10.1103/PhysRev.75.486
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1103/PhysRev.75.1736
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1103/PhysRev.107.1162
https://doi.org/10.1016/0029-5582(60)90285-6
https://doi.org/10.1007/BF00752333
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1016/S0081-1947(08)60615-3
https://doi.org/10.1016/S0081-1947(08)60615-3
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1016/S0081-1947(08)60665-7
https://doi.org/10.6092/polito/porto/2596360
https://doi.org/10.1103/PhysRevB.87.024505
https://doi.org/10.1103/PhysRevB.13.1416
https://doi.org/10.1103/PhysRev.148.263
https://doi.org/10.1103/PhysRev.134.A805


BIBLIOGRAPHY 101

[41] D. J. Scalapino, Y. Wada, and J. C. Swihart: “Strong-coupling superconductor at nonzero
temperature”. In: Phys. Rev. Lett. 14 (1965), pp. 102–105. doi: 10.1103/PhysRevLett.14.102.

[42] R. C. Dynes: “McMillan’s equation and the Tc of superconductors”. In: Solid State Commun.
10 (1972), pp. 615–618. doi: 10.1016/0038-1098(72)90603-5.

[43] J. R. Schrieffer: Theory of superconductivity. Revised printing. Advanced Book Program.
Westview Press, 1983.

[44] N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov: A new method in the theory of
superconductivity. New York: Consultants Bureau, 1959.

[45] P. Morel and P. W. Anderson: “Calculation of the superconducting state parameters with
retarded electron-phonon interaction”. In: Phys. Rev. 125 (1962), pp. 1263–1271. doi:
10.1103/PhysRev.125.1263.

[46] S. Schafroth, J. J. Rodríguez-Núñez, and H. Beck: “Some global properties of the
attractive Hubbard model in the superconducting phase: the T-matrix approximation in two
dimensions”. In: J. Phys. Condens. Matter 9 (1997), L111––L118. doi: 10.1088/issn.0953-
8984.

[47] E. J. Nicol and J. P. Carbotte: “Properties of the superconducting state in a two-band
model”. In: Phys. Rev. B 71 (2005), p. 054501. doi: 10.1103/PhysRevB.71.054501.

[48] P. Entel and M. Peter: “On the influence of Fermi surface anisotropy on Hc2 of weak
and strong coupling superconductors”. In: J. Low Temp. Phys. 22 (1976), pp. 613–621. doi:
10.1007/BF00659063.

[49] P. Entel: “Anisotropy effects in superconductors with magnetic impurities. I”. In: Z. Phys.
B 23 (1976), pp. 321–330. doi: 10.1007/BF01316542.

[50] W. B. Jones and W. J. Thron: “Numerical stability in evaluating continued fractions”. In:
Math. Comp. 28 (1974), pp. 795–810. doi: 10.1090/S0025-5718-1974-0373265-5.
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